Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zexpgcd Structured version   Visualization version   GIF version

Theorem zexpgcd 40596
Description: Exponentiation distributes over GCD. zgcdsq 16554 extended to nonnegative exponents. nn0expgcd 40595 extended to integer bases by symmetry. (Contributed by Steven Nguyen, 5-Apr-2023.)
Assertion
Ref Expression
zexpgcd ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))

Proof of Theorem zexpgcd
StepHypRef Expression
1 gcdabs 16337 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((abs‘𝐴) gcd (abs‘𝐵)) = (𝐴 gcd 𝐵))
213adant3 1131 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((abs‘𝐴) gcd (abs‘𝐵)) = (𝐴 gcd 𝐵))
32eqcomd 2742 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 gcd 𝐵) = ((abs‘𝐴) gcd (abs‘𝐵)))
43oveq1d 7352 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = (((abs‘𝐴) gcd (abs‘𝐵))↑𝑁))
5 nn0abscl 15123 . . 3 (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℕ0)
6 nn0abscl 15123 . . 3 (𝐵 ∈ ℤ → (abs‘𝐵) ∈ ℕ0)
7 id 22 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
8 nn0expgcd 40595 . . 3 (((abs‘𝐴) ∈ ℕ0 ∧ (abs‘𝐵) ∈ ℕ0𝑁 ∈ ℕ0) → (((abs‘𝐴) gcd (abs‘𝐵))↑𝑁) = (((abs‘𝐴)↑𝑁) gcd ((abs‘𝐵)↑𝑁)))
95, 6, 7, 8syl3an 1159 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((abs‘𝐴) gcd (abs‘𝐵))↑𝑁) = (((abs‘𝐴)↑𝑁) gcd ((abs‘𝐵)↑𝑁)))
10 zcn 12425 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
11103ad2ant1 1132 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
12 simp3 1137 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
1311, 12absexpd 15263 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))
1413eqcomd 2742 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((abs‘𝐴)↑𝑁) = (abs‘(𝐴𝑁)))
15 zcn 12425 . . . . . . 7 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
16153ad2ant2 1133 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℂ)
1716, 12absexpd 15263 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (abs‘(𝐵𝑁)) = ((abs‘𝐵)↑𝑁))
1817eqcomd 2742 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((abs‘𝐵)↑𝑁) = (abs‘(𝐵𝑁)))
1914, 18oveq12d 7355 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((abs‘𝐴)↑𝑁) gcd ((abs‘𝐵)↑𝑁)) = ((abs‘(𝐴𝑁)) gcd (abs‘(𝐵𝑁))))
20 zexpcl 13898 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℤ)
21203adant2 1130 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℤ)
22 zexpcl 13898 . . . . 5 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐵𝑁) ∈ ℤ)
23223adant1 1129 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐵𝑁) ∈ ℤ)
24 gcdabs 16337 . . . 4 (((𝐴𝑁) ∈ ℤ ∧ (𝐵𝑁) ∈ ℤ) → ((abs‘(𝐴𝑁)) gcd (abs‘(𝐵𝑁))) = ((𝐴𝑁) gcd (𝐵𝑁)))
2521, 23, 24syl2anc 584 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((abs‘(𝐴𝑁)) gcd (abs‘(𝐵𝑁))) = ((𝐴𝑁) gcd (𝐵𝑁)))
2619, 25eqtrd 2776 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((abs‘𝐴)↑𝑁) gcd ((abs‘𝐵)↑𝑁)) = ((𝐴𝑁) gcd (𝐵𝑁)))
274, 9, 263eqtrd 2780 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2105  cfv 6479  (class class class)co 7337  cc 10970  0cn0 12334  cz 12420  cexp 13883  abscabs 15044   gcd cgcd 16300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049  ax-pre-sup 11050
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-sup 9299  df-inf 9300  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-nn 12075  df-2 12137  df-3 12138  df-n0 12335  df-z 12421  df-uz 12684  df-rp 12832  df-fl 13613  df-mod 13691  df-seq 13823  df-exp 13884  df-cj 14909  df-re 14910  df-im 14911  df-sqrt 15045  df-abs 15046  df-dvds 16063  df-gcd 16301
This theorem is referenced by:  numdenexp  40597
  Copyright terms: Public domain W3C validator