| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zexpgcd | Structured version Visualization version GIF version | ||
| Description: Exponentiation distributes over GCD. zgcdsq 16699 extended to nonnegative exponents. nn0expgcd 16510 extended to integer bases by symmetry. (Contributed by Steven Nguyen, 5-Apr-2023.) |
| Ref | Expression |
|---|---|
| zexpgcd | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdabs 16477 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((abs‘𝐴) gcd (abs‘𝐵)) = (𝐴 gcd 𝐵)) | |
| 2 | 1 | 3adant3 1132 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((abs‘𝐴) gcd (abs‘𝐵)) = (𝐴 gcd 𝐵)) |
| 3 | 2 | eqcomd 2735 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 gcd 𝐵) = ((abs‘𝐴) gcd (abs‘𝐵))) |
| 4 | 3 | oveq1d 7384 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = (((abs‘𝐴) gcd (abs‘𝐵))↑𝑁)) |
| 5 | nn0abscl 15254 | . . 3 ⊢ (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℕ0) | |
| 6 | nn0abscl 15254 | . . 3 ⊢ (𝐵 ∈ ℤ → (abs‘𝐵) ∈ ℕ0) | |
| 7 | id 22 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0) | |
| 8 | nn0expgcd 16510 | . . 3 ⊢ (((abs‘𝐴) ∈ ℕ0 ∧ (abs‘𝐵) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (((abs‘𝐴) gcd (abs‘𝐵))↑𝑁) = (((abs‘𝐴)↑𝑁) gcd ((abs‘𝐵)↑𝑁))) | |
| 9 | 5, 6, 7, 8 | syl3an 1160 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((abs‘𝐴) gcd (abs‘𝐵))↑𝑁) = (((abs‘𝐴)↑𝑁) gcd ((abs‘𝐵)↑𝑁))) |
| 10 | zcn 12510 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
| 11 | 10 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ) |
| 12 | simp3 1138 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
| 13 | 11, 12 | absexpd 15397 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁)) |
| 14 | 13 | eqcomd 2735 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((abs‘𝐴)↑𝑁) = (abs‘(𝐴↑𝑁))) |
| 15 | zcn 12510 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℂ) | |
| 16 | 15 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℂ) |
| 17 | 16, 12 | absexpd 15397 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (abs‘(𝐵↑𝑁)) = ((abs‘𝐵)↑𝑁)) |
| 18 | 17 | eqcomd 2735 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((abs‘𝐵)↑𝑁) = (abs‘(𝐵↑𝑁))) |
| 19 | 14, 18 | oveq12d 7387 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((abs‘𝐴)↑𝑁) gcd ((abs‘𝐵)↑𝑁)) = ((abs‘(𝐴↑𝑁)) gcd (abs‘(𝐵↑𝑁)))) |
| 20 | zexpcl 14017 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) | |
| 21 | 20 | 3adant2 1131 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) |
| 22 | zexpcl 14017 | . . . . 5 ⊢ ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐵↑𝑁) ∈ ℤ) | |
| 23 | 22 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐵↑𝑁) ∈ ℤ) |
| 24 | gcdabs 16477 | . . . 4 ⊢ (((𝐴↑𝑁) ∈ ℤ ∧ (𝐵↑𝑁) ∈ ℤ) → ((abs‘(𝐴↑𝑁)) gcd (abs‘(𝐵↑𝑁))) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) | |
| 25 | 21, 23, 24 | syl2anc 584 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((abs‘(𝐴↑𝑁)) gcd (abs‘(𝐵↑𝑁))) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) |
| 26 | 19, 25 | eqtrd 2764 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((abs‘𝐴)↑𝑁) gcd ((abs‘𝐵)↑𝑁)) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) |
| 27 | 4, 9, 26 | 3eqtrd 2768 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 ℕ0cn0 12418 ℤcz 12505 ↑cexp 14002 abscabs 15176 gcd cgcd 16440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-fl 13730 df-mod 13808 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-dvds 16199 df-gcd 16441 |
| This theorem is referenced by: numdenexp 16706 |
| Copyright terms: Public domain | W3C validator |