| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zexpgcd | Structured version Visualization version GIF version | ||
| Description: Exponentiation distributes over GCD. zgcdsq 16791 extended to nonnegative exponents. nn0expgcd 16602 extended to integer bases by symmetry. (Contributed by Steven Nguyen, 5-Apr-2023.) |
| Ref | Expression |
|---|---|
| zexpgcd | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdabs 16569 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((abs‘𝐴) gcd (abs‘𝐵)) = (𝐴 gcd 𝐵)) | |
| 2 | 1 | 3adant3 1132 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((abs‘𝐴) gcd (abs‘𝐵)) = (𝐴 gcd 𝐵)) |
| 3 | 2 | eqcomd 2742 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 gcd 𝐵) = ((abs‘𝐴) gcd (abs‘𝐵))) |
| 4 | 3 | oveq1d 7447 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = (((abs‘𝐴) gcd (abs‘𝐵))↑𝑁)) |
| 5 | nn0abscl 15352 | . . 3 ⊢ (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℕ0) | |
| 6 | nn0abscl 15352 | . . 3 ⊢ (𝐵 ∈ ℤ → (abs‘𝐵) ∈ ℕ0) | |
| 7 | id 22 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0) | |
| 8 | nn0expgcd 16602 | . . 3 ⊢ (((abs‘𝐴) ∈ ℕ0 ∧ (abs‘𝐵) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (((abs‘𝐴) gcd (abs‘𝐵))↑𝑁) = (((abs‘𝐴)↑𝑁) gcd ((abs‘𝐵)↑𝑁))) | |
| 9 | 5, 6, 7, 8 | syl3an 1160 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((abs‘𝐴) gcd (abs‘𝐵))↑𝑁) = (((abs‘𝐴)↑𝑁) gcd ((abs‘𝐵)↑𝑁))) |
| 10 | zcn 12620 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
| 11 | 10 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ) |
| 12 | simp3 1138 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
| 13 | 11, 12 | absexpd 15492 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁)) |
| 14 | 13 | eqcomd 2742 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((abs‘𝐴)↑𝑁) = (abs‘(𝐴↑𝑁))) |
| 15 | zcn 12620 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℂ) | |
| 16 | 15 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℂ) |
| 17 | 16, 12 | absexpd 15492 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (abs‘(𝐵↑𝑁)) = ((abs‘𝐵)↑𝑁)) |
| 18 | 17 | eqcomd 2742 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((abs‘𝐵)↑𝑁) = (abs‘(𝐵↑𝑁))) |
| 19 | 14, 18 | oveq12d 7450 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((abs‘𝐴)↑𝑁) gcd ((abs‘𝐵)↑𝑁)) = ((abs‘(𝐴↑𝑁)) gcd (abs‘(𝐵↑𝑁)))) |
| 20 | zexpcl 14118 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) | |
| 21 | 20 | 3adant2 1131 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) |
| 22 | zexpcl 14118 | . . . . 5 ⊢ ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐵↑𝑁) ∈ ℤ) | |
| 23 | 22 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐵↑𝑁) ∈ ℤ) |
| 24 | gcdabs 16569 | . . . 4 ⊢ (((𝐴↑𝑁) ∈ ℤ ∧ (𝐵↑𝑁) ∈ ℤ) → ((abs‘(𝐴↑𝑁)) gcd (abs‘(𝐵↑𝑁))) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) | |
| 25 | 21, 23, 24 | syl2anc 584 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((abs‘(𝐴↑𝑁)) gcd (abs‘(𝐵↑𝑁))) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) |
| 26 | 19, 25 | eqtrd 2776 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((abs‘𝐴)↑𝑁) gcd ((abs‘𝐵)↑𝑁)) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) |
| 27 | 4, 9, 26 | 3eqtrd 2780 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ‘cfv 6560 (class class class)co 7432 ℂcc 11154 ℕ0cn0 12528 ℤcz 12615 ↑cexp 14103 abscabs 15274 gcd cgcd 16532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-sup 9483 df-inf 9484 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-n0 12529 df-z 12616 df-uz 12880 df-rp 13036 df-fl 13833 df-mod 13911 df-seq 14044 df-exp 14104 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-dvds 16292 df-gcd 16533 |
| This theorem is referenced by: numdenexp 16798 |
| Copyright terms: Public domain | W3C validator |