MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zexpgcd Structured version   Visualization version   GIF version

Theorem zexpgcd 16589
Description: Exponentiation distributes over GCD. zgcdsq 16777 extended to nonnegative exponents. nn0expgcd 16588 extended to integer bases by symmetry. (Contributed by Steven Nguyen, 5-Apr-2023.)
Assertion
Ref Expression
zexpgcd ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))

Proof of Theorem zexpgcd
StepHypRef Expression
1 gcdabs 16555 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((abs‘𝐴) gcd (abs‘𝐵)) = (𝐴 gcd 𝐵))
213adant3 1132 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((abs‘𝐴) gcd (abs‘𝐵)) = (𝐴 gcd 𝐵))
32eqcomd 2742 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 gcd 𝐵) = ((abs‘𝐴) gcd (abs‘𝐵)))
43oveq1d 7425 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = (((abs‘𝐴) gcd (abs‘𝐵))↑𝑁))
5 nn0abscl 15336 . . 3 (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℕ0)
6 nn0abscl 15336 . . 3 (𝐵 ∈ ℤ → (abs‘𝐵) ∈ ℕ0)
7 id 22 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
8 nn0expgcd 16588 . . 3 (((abs‘𝐴) ∈ ℕ0 ∧ (abs‘𝐵) ∈ ℕ0𝑁 ∈ ℕ0) → (((abs‘𝐴) gcd (abs‘𝐵))↑𝑁) = (((abs‘𝐴)↑𝑁) gcd ((abs‘𝐵)↑𝑁)))
95, 6, 7, 8syl3an 1160 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((abs‘𝐴) gcd (abs‘𝐵))↑𝑁) = (((abs‘𝐴)↑𝑁) gcd ((abs‘𝐵)↑𝑁)))
10 zcn 12598 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
11103ad2ant1 1133 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
12 simp3 1138 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
1311, 12absexpd 15476 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))
1413eqcomd 2742 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((abs‘𝐴)↑𝑁) = (abs‘(𝐴𝑁)))
15 zcn 12598 . . . . . . 7 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
16153ad2ant2 1134 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℂ)
1716, 12absexpd 15476 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (abs‘(𝐵𝑁)) = ((abs‘𝐵)↑𝑁))
1817eqcomd 2742 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((abs‘𝐵)↑𝑁) = (abs‘(𝐵𝑁)))
1914, 18oveq12d 7428 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((abs‘𝐴)↑𝑁) gcd ((abs‘𝐵)↑𝑁)) = ((abs‘(𝐴𝑁)) gcd (abs‘(𝐵𝑁))))
20 zexpcl 14099 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℤ)
21203adant2 1131 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℤ)
22 zexpcl 14099 . . . . 5 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐵𝑁) ∈ ℤ)
23223adant1 1130 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐵𝑁) ∈ ℤ)
24 gcdabs 16555 . . . 4 (((𝐴𝑁) ∈ ℤ ∧ (𝐵𝑁) ∈ ℤ) → ((abs‘(𝐴𝑁)) gcd (abs‘(𝐵𝑁))) = ((𝐴𝑁) gcd (𝐵𝑁)))
2521, 23, 24syl2anc 584 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((abs‘(𝐴𝑁)) gcd (abs‘(𝐵𝑁))) = ((𝐴𝑁) gcd (𝐵𝑁)))
2619, 25eqtrd 2771 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((abs‘𝐴)↑𝑁) gcd ((abs‘𝐵)↑𝑁)) = ((𝐴𝑁) gcd (𝐵𝑁)))
274, 9, 263eqtrd 2775 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cfv 6536  (class class class)co 7410  cc 11132  0cn0 12506  cz 12593  cexp 14084  abscabs 15258   gcd cgcd 16518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-dvds 16278  df-gcd 16519
This theorem is referenced by:  numdenexp  16784
  Copyright terms: Public domain W3C validator