![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > zexpgcd | Structured version Visualization version GIF version |
Description: Exponentiation distributes over GCD. zgcdsq 16688 extended to nonnegative exponents. nn0expgcd 41226 extended to integer bases by symmetry. (Contributed by Steven Nguyen, 5-Apr-2023.) |
Ref | Expression |
---|---|
zexpgcd | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gcdabs 16471 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((abs‘𝐴) gcd (abs‘𝐵)) = (𝐴 gcd 𝐵)) | |
2 | 1 | 3adant3 1132 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((abs‘𝐴) gcd (abs‘𝐵)) = (𝐴 gcd 𝐵)) |
3 | 2 | eqcomd 2738 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 gcd 𝐵) = ((abs‘𝐴) gcd (abs‘𝐵))) |
4 | 3 | oveq1d 7423 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = (((abs‘𝐴) gcd (abs‘𝐵))↑𝑁)) |
5 | nn0abscl 15258 | . . 3 ⊢ (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℕ0) | |
6 | nn0abscl 15258 | . . 3 ⊢ (𝐵 ∈ ℤ → (abs‘𝐵) ∈ ℕ0) | |
7 | id 22 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0) | |
8 | nn0expgcd 41226 | . . 3 ⊢ (((abs‘𝐴) ∈ ℕ0 ∧ (abs‘𝐵) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (((abs‘𝐴) gcd (abs‘𝐵))↑𝑁) = (((abs‘𝐴)↑𝑁) gcd ((abs‘𝐵)↑𝑁))) | |
9 | 5, 6, 7, 8 | syl3an 1160 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((abs‘𝐴) gcd (abs‘𝐵))↑𝑁) = (((abs‘𝐴)↑𝑁) gcd ((abs‘𝐵)↑𝑁))) |
10 | zcn 12562 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
11 | 10 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ) |
12 | simp3 1138 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
13 | 11, 12 | absexpd 15398 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁)) |
14 | 13 | eqcomd 2738 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((abs‘𝐴)↑𝑁) = (abs‘(𝐴↑𝑁))) |
15 | zcn 12562 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℂ) | |
16 | 15 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℂ) |
17 | 16, 12 | absexpd 15398 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (abs‘(𝐵↑𝑁)) = ((abs‘𝐵)↑𝑁)) |
18 | 17 | eqcomd 2738 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((abs‘𝐵)↑𝑁) = (abs‘(𝐵↑𝑁))) |
19 | 14, 18 | oveq12d 7426 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((abs‘𝐴)↑𝑁) gcd ((abs‘𝐵)↑𝑁)) = ((abs‘(𝐴↑𝑁)) gcd (abs‘(𝐵↑𝑁)))) |
20 | zexpcl 14041 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) | |
21 | 20 | 3adant2 1131 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) |
22 | zexpcl 14041 | . . . . 5 ⊢ ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐵↑𝑁) ∈ ℤ) | |
23 | 22 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐵↑𝑁) ∈ ℤ) |
24 | gcdabs 16471 | . . . 4 ⊢ (((𝐴↑𝑁) ∈ ℤ ∧ (𝐵↑𝑁) ∈ ℤ) → ((abs‘(𝐴↑𝑁)) gcd (abs‘(𝐵↑𝑁))) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) | |
25 | 21, 23, 24 | syl2anc 584 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((abs‘(𝐴↑𝑁)) gcd (abs‘(𝐵↑𝑁))) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) |
26 | 19, 25 | eqtrd 2772 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((abs‘𝐴)↑𝑁) gcd ((abs‘𝐵)↑𝑁)) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) |
27 | 4, 9, 26 | 3eqtrd 2776 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ‘cfv 6543 (class class class)co 7408 ℂcc 11107 ℕ0cn0 12471 ℤcz 12557 ↑cexp 14026 abscabs 15180 gcd cgcd 16434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-inf 9437 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-fl 13756 df-mod 13834 df-seq 13966 df-exp 14027 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-dvds 16197 df-gcd 16435 |
This theorem is referenced by: numdenexp 41228 |
Copyright terms: Public domain | W3C validator |