MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashdifsnp1 Structured version   Visualization version   GIF version

Theorem hashdifsnp1 14208
Description: If the size of a set is a nonnegative integer increased by 1, the size of the set with one of its elements removed is this nonnegative integer. (Contributed by Alexander van der Vekens, 7-Jan-2018.)
Assertion
Ref Expression
hashdifsnp1 ((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) → ((♯‘𝑉) = (𝑌 + 1) → (♯‘(𝑉 ∖ {𝑁})) = 𝑌))

Proof of Theorem hashdifsnp1
StepHypRef Expression
1 peano2nn0 12273 . . . . . . . 8 (𝑌 ∈ ℕ0 → (𝑌 + 1) ∈ ℕ0)
2 eleq1a 2836 . . . . . . . . . . . . 13 ((𝑌 + 1) ∈ ℕ0 → ((♯‘𝑉) = (𝑌 + 1) → (♯‘𝑉) ∈ ℕ0))
32adantr 481 . . . . . . . . . . . 12 (((𝑌 + 1) ∈ ℕ0𝑉𝑊) → ((♯‘𝑉) = (𝑌 + 1) → (♯‘𝑉) ∈ ℕ0))
43imp 407 . . . . . . . . . . 11 ((((𝑌 + 1) ∈ ℕ0𝑉𝑊) ∧ (♯‘𝑉) = (𝑌 + 1)) → (♯‘𝑉) ∈ ℕ0)
5 hashclb 14071 . . . . . . . . . . . 12 (𝑉𝑊 → (𝑉 ∈ Fin ↔ (♯‘𝑉) ∈ ℕ0))
65ad2antlr 724 . . . . . . . . . . 11 ((((𝑌 + 1) ∈ ℕ0𝑉𝑊) ∧ (♯‘𝑉) = (𝑌 + 1)) → (𝑉 ∈ Fin ↔ (♯‘𝑉) ∈ ℕ0))
74, 6mpbird 256 . . . . . . . . . 10 ((((𝑌 + 1) ∈ ℕ0𝑉𝑊) ∧ (♯‘𝑉) = (𝑌 + 1)) → 𝑉 ∈ Fin)
87ex 413 . . . . . . . . 9 (((𝑌 + 1) ∈ ℕ0𝑉𝑊) → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin))
98ex 413 . . . . . . . 8 ((𝑌 + 1) ∈ ℕ0 → (𝑉𝑊 → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin)))
101, 9syl 17 . . . . . . 7 (𝑌 ∈ ℕ0 → (𝑉𝑊 → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin)))
1110impcom 408 . . . . . 6 ((𝑉𝑊𝑌 ∈ ℕ0) → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin))
12113adant2 1130 . . . . 5 ((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin))
1312imp 407 . . . 4 (((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → 𝑉 ∈ Fin)
14 snssi 4747 . . . . . 6 (𝑁𝑉 → {𝑁} ⊆ 𝑉)
15143ad2ant2 1133 . . . . 5 ((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) → {𝑁} ⊆ 𝑉)
1615adantr 481 . . . 4 (((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → {𝑁} ⊆ 𝑉)
17 hashssdif 14125 . . . 4 ((𝑉 ∈ Fin ∧ {𝑁} ⊆ 𝑉) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − (♯‘{𝑁})))
1813, 16, 17syl2anc 584 . . 3 (((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − (♯‘{𝑁})))
19 oveq1 7278 . . . 4 ((♯‘𝑉) = (𝑌 + 1) → ((♯‘𝑉) − (♯‘{𝑁})) = ((𝑌 + 1) − (♯‘{𝑁})))
20 hashsng 14082 . . . . . . 7 (𝑁𝑉 → (♯‘{𝑁}) = 1)
2120oveq2d 7287 . . . . . 6 (𝑁𝑉 → ((𝑌 + 1) − (♯‘{𝑁})) = ((𝑌 + 1) − 1))
22213ad2ant2 1133 . . . . 5 ((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) → ((𝑌 + 1) − (♯‘{𝑁})) = ((𝑌 + 1) − 1))
23 nn0cn 12243 . . . . . . 7 (𝑌 ∈ ℕ0𝑌 ∈ ℂ)
24 1cnd 10971 . . . . . . 7 (𝑌 ∈ ℕ0 → 1 ∈ ℂ)
2523, 24pncand 11333 . . . . . 6 (𝑌 ∈ ℕ0 → ((𝑌 + 1) − 1) = 𝑌)
26253ad2ant3 1134 . . . . 5 ((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) → ((𝑌 + 1) − 1) = 𝑌)
2722, 26eqtrd 2780 . . . 4 ((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) → ((𝑌 + 1) − (♯‘{𝑁})) = 𝑌)
2819, 27sylan9eqr 2802 . . 3 (((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → ((♯‘𝑉) − (♯‘{𝑁})) = 𝑌)
2918, 28eqtrd 2780 . 2 (((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → (♯‘(𝑉 ∖ {𝑁})) = 𝑌)
3029ex 413 1 ((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) → ((♯‘𝑉) = (𝑌 + 1) → (♯‘(𝑉 ∖ {𝑁})) = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  cdif 3889  wss 3892  {csn 4567  cfv 6432  (class class class)co 7271  Fincfn 8716  1c1 10873   + caddc 10875  cmin 11205  0cn0 12233  chash 14042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-oadd 8292  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-dju 9660  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12582  df-fz 13239  df-hash 14043
This theorem is referenced by:  fi1uzind  14209  brfi1indALT  14212  cusgrsize2inds  27818  fsuppind  40276
  Copyright terms: Public domain W3C validator