MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashdifsnp1 Structured version   Visualization version   GIF version

Theorem hashdifsnp1 14524
Description: If the size of a set is a nonnegative integer increased by 1, the size of the set with one of its elements removed is this nonnegative integer. (Contributed by Alexander van der Vekens, 7-Jan-2018.)
Assertion
Ref Expression
hashdifsnp1 ((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) → ((♯‘𝑉) = (𝑌 + 1) → (♯‘(𝑉 ∖ {𝑁})) = 𝑌))

Proof of Theorem hashdifsnp1
StepHypRef Expression
1 peano2nn0 12541 . . . . . . . 8 (𝑌 ∈ ℕ0 → (𝑌 + 1) ∈ ℕ0)
2 eleq1a 2829 . . . . . . . . . . . . 13 ((𝑌 + 1) ∈ ℕ0 → ((♯‘𝑉) = (𝑌 + 1) → (♯‘𝑉) ∈ ℕ0))
32adantr 480 . . . . . . . . . . . 12 (((𝑌 + 1) ∈ ℕ0𝑉𝑊) → ((♯‘𝑉) = (𝑌 + 1) → (♯‘𝑉) ∈ ℕ0))
43imp 406 . . . . . . . . . . 11 ((((𝑌 + 1) ∈ ℕ0𝑉𝑊) ∧ (♯‘𝑉) = (𝑌 + 1)) → (♯‘𝑉) ∈ ℕ0)
5 hashclb 14376 . . . . . . . . . . . 12 (𝑉𝑊 → (𝑉 ∈ Fin ↔ (♯‘𝑉) ∈ ℕ0))
65ad2antlr 727 . . . . . . . . . . 11 ((((𝑌 + 1) ∈ ℕ0𝑉𝑊) ∧ (♯‘𝑉) = (𝑌 + 1)) → (𝑉 ∈ Fin ↔ (♯‘𝑉) ∈ ℕ0))
74, 6mpbird 257 . . . . . . . . . 10 ((((𝑌 + 1) ∈ ℕ0𝑉𝑊) ∧ (♯‘𝑉) = (𝑌 + 1)) → 𝑉 ∈ Fin)
87ex 412 . . . . . . . . 9 (((𝑌 + 1) ∈ ℕ0𝑉𝑊) → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin))
98ex 412 . . . . . . . 8 ((𝑌 + 1) ∈ ℕ0 → (𝑉𝑊 → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin)))
101, 9syl 17 . . . . . . 7 (𝑌 ∈ ℕ0 → (𝑉𝑊 → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin)))
1110impcom 407 . . . . . 6 ((𝑉𝑊𝑌 ∈ ℕ0) → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin))
12113adant2 1131 . . . . 5 ((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin))
1312imp 406 . . . 4 (((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → 𝑉 ∈ Fin)
14 snssi 4784 . . . . . 6 (𝑁𝑉 → {𝑁} ⊆ 𝑉)
15143ad2ant2 1134 . . . . 5 ((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) → {𝑁} ⊆ 𝑉)
1615adantr 480 . . . 4 (((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → {𝑁} ⊆ 𝑉)
17 hashssdif 14430 . . . 4 ((𝑉 ∈ Fin ∧ {𝑁} ⊆ 𝑉) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − (♯‘{𝑁})))
1813, 16, 17syl2anc 584 . . 3 (((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − (♯‘{𝑁})))
19 oveq1 7412 . . . 4 ((♯‘𝑉) = (𝑌 + 1) → ((♯‘𝑉) − (♯‘{𝑁})) = ((𝑌 + 1) − (♯‘{𝑁})))
20 hashsng 14387 . . . . . . 7 (𝑁𝑉 → (♯‘{𝑁}) = 1)
2120oveq2d 7421 . . . . . 6 (𝑁𝑉 → ((𝑌 + 1) − (♯‘{𝑁})) = ((𝑌 + 1) − 1))
22213ad2ant2 1134 . . . . 5 ((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) → ((𝑌 + 1) − (♯‘{𝑁})) = ((𝑌 + 1) − 1))
23 nn0cn 12511 . . . . . . 7 (𝑌 ∈ ℕ0𝑌 ∈ ℂ)
24 1cnd 11230 . . . . . . 7 (𝑌 ∈ ℕ0 → 1 ∈ ℂ)
2523, 24pncand 11595 . . . . . 6 (𝑌 ∈ ℕ0 → ((𝑌 + 1) − 1) = 𝑌)
26253ad2ant3 1135 . . . . 5 ((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) → ((𝑌 + 1) − 1) = 𝑌)
2722, 26eqtrd 2770 . . . 4 ((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) → ((𝑌 + 1) − (♯‘{𝑁})) = 𝑌)
2819, 27sylan9eqr 2792 . . 3 (((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → ((♯‘𝑉) − (♯‘{𝑁})) = 𝑌)
2918, 28eqtrd 2770 . 2 (((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → (♯‘(𝑉 ∖ {𝑁})) = 𝑌)
3029ex 412 1 ((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) → ((♯‘𝑉) = (𝑌 + 1) → (♯‘(𝑉 ∖ {𝑁})) = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  cdif 3923  wss 3926  {csn 4601  cfv 6531  (class class class)co 7405  Fincfn 8959  1c1 11130   + caddc 11132  cmin 11466  0cn0 12501  chash 14348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-hash 14349
This theorem is referenced by:  fi1uzind  14525  brfi1indALT  14528  cusgrsize2inds  29433  fsuppind  42613
  Copyright terms: Public domain W3C validator