Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hashdifsnp1 | Structured version Visualization version GIF version |
Description: If the size of a set is a nonnegative integer increased by 1, the size of the set with one of its elements removed is this nonnegative integer. (Contributed by Alexander van der Vekens, 7-Jan-2018.) |
Ref | Expression |
---|---|
hashdifsnp1 | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0) → ((♯‘𝑉) = (𝑌 + 1) → (♯‘(𝑉 ∖ {𝑁})) = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2nn0 12203 | . . . . . . . 8 ⊢ (𝑌 ∈ ℕ0 → (𝑌 + 1) ∈ ℕ0) | |
2 | eleq1a 2834 | . . . . . . . . . . . . 13 ⊢ ((𝑌 + 1) ∈ ℕ0 → ((♯‘𝑉) = (𝑌 + 1) → (♯‘𝑉) ∈ ℕ0)) | |
3 | 2 | adantr 480 | . . . . . . . . . . . 12 ⊢ (((𝑌 + 1) ∈ ℕ0 ∧ 𝑉 ∈ 𝑊) → ((♯‘𝑉) = (𝑌 + 1) → (♯‘𝑉) ∈ ℕ0)) |
4 | 3 | imp 406 | . . . . . . . . . . 11 ⊢ ((((𝑌 + 1) ∈ ℕ0 ∧ 𝑉 ∈ 𝑊) ∧ (♯‘𝑉) = (𝑌 + 1)) → (♯‘𝑉) ∈ ℕ0) |
5 | hashclb 14001 | . . . . . . . . . . . 12 ⊢ (𝑉 ∈ 𝑊 → (𝑉 ∈ Fin ↔ (♯‘𝑉) ∈ ℕ0)) | |
6 | 5 | ad2antlr 723 | . . . . . . . . . . 11 ⊢ ((((𝑌 + 1) ∈ ℕ0 ∧ 𝑉 ∈ 𝑊) ∧ (♯‘𝑉) = (𝑌 + 1)) → (𝑉 ∈ Fin ↔ (♯‘𝑉) ∈ ℕ0)) |
7 | 4, 6 | mpbird 256 | . . . . . . . . . 10 ⊢ ((((𝑌 + 1) ∈ ℕ0 ∧ 𝑉 ∈ 𝑊) ∧ (♯‘𝑉) = (𝑌 + 1)) → 𝑉 ∈ Fin) |
8 | 7 | ex 412 | . . . . . . . . 9 ⊢ (((𝑌 + 1) ∈ ℕ0 ∧ 𝑉 ∈ 𝑊) → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin)) |
9 | 8 | ex 412 | . . . . . . . 8 ⊢ ((𝑌 + 1) ∈ ℕ0 → (𝑉 ∈ 𝑊 → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin))) |
10 | 1, 9 | syl 17 | . . . . . . 7 ⊢ (𝑌 ∈ ℕ0 → (𝑉 ∈ 𝑊 → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin))) |
11 | 10 | impcom 407 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0) → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin)) |
12 | 11 | 3adant2 1129 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0) → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin)) |
13 | 12 | imp 406 | . . . 4 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → 𝑉 ∈ Fin) |
14 | snssi 4738 | . . . . . 6 ⊢ (𝑁 ∈ 𝑉 → {𝑁} ⊆ 𝑉) | |
15 | 14 | 3ad2ant2 1132 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0) → {𝑁} ⊆ 𝑉) |
16 | 15 | adantr 480 | . . . 4 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → {𝑁} ⊆ 𝑉) |
17 | hashssdif 14055 | . . . 4 ⊢ ((𝑉 ∈ Fin ∧ {𝑁} ⊆ 𝑉) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − (♯‘{𝑁}))) | |
18 | 13, 16, 17 | syl2anc 583 | . . 3 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − (♯‘{𝑁}))) |
19 | oveq1 7262 | . . . 4 ⊢ ((♯‘𝑉) = (𝑌 + 1) → ((♯‘𝑉) − (♯‘{𝑁})) = ((𝑌 + 1) − (♯‘{𝑁}))) | |
20 | hashsng 14012 | . . . . . . 7 ⊢ (𝑁 ∈ 𝑉 → (♯‘{𝑁}) = 1) | |
21 | 20 | oveq2d 7271 | . . . . . 6 ⊢ (𝑁 ∈ 𝑉 → ((𝑌 + 1) − (♯‘{𝑁})) = ((𝑌 + 1) − 1)) |
22 | 21 | 3ad2ant2 1132 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0) → ((𝑌 + 1) − (♯‘{𝑁})) = ((𝑌 + 1) − 1)) |
23 | nn0cn 12173 | . . . . . . 7 ⊢ (𝑌 ∈ ℕ0 → 𝑌 ∈ ℂ) | |
24 | 1cnd 10901 | . . . . . . 7 ⊢ (𝑌 ∈ ℕ0 → 1 ∈ ℂ) | |
25 | 23, 24 | pncand 11263 | . . . . . 6 ⊢ (𝑌 ∈ ℕ0 → ((𝑌 + 1) − 1) = 𝑌) |
26 | 25 | 3ad2ant3 1133 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0) → ((𝑌 + 1) − 1) = 𝑌) |
27 | 22, 26 | eqtrd 2778 | . . . 4 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0) → ((𝑌 + 1) − (♯‘{𝑁})) = 𝑌) |
28 | 19, 27 | sylan9eqr 2801 | . . 3 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → ((♯‘𝑉) − (♯‘{𝑁})) = 𝑌) |
29 | 18, 28 | eqtrd 2778 | . 2 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → (♯‘(𝑉 ∖ {𝑁})) = 𝑌) |
30 | 29 | ex 412 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0) → ((♯‘𝑉) = (𝑌 + 1) → (♯‘(𝑉 ∖ {𝑁})) = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ⊆ wss 3883 {csn 4558 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 1c1 10803 + caddc 10805 − cmin 11135 ℕ0cn0 12163 ♯chash 13972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-hash 13973 |
This theorem is referenced by: fi1uzind 14139 brfi1indALT 14142 cusgrsize2inds 27723 fsuppind 40202 |
Copyright terms: Public domain | W3C validator |