MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashdifsnp1 Structured version   Visualization version   GIF version

Theorem hashdifsnp1 13855
Description: If the size of a set is a nonnegative integer increased by 1, the size of the set with one of its elements removed is this nonnegative integer. (Contributed by Alexander van der Vekens, 7-Jan-2018.)
Assertion
Ref Expression
hashdifsnp1 ((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) → ((♯‘𝑉) = (𝑌 + 1) → (♯‘(𝑉 ∖ {𝑁})) = 𝑌))

Proof of Theorem hashdifsnp1
StepHypRef Expression
1 peano2nn0 11938 . . . . . . . 8 (𝑌 ∈ ℕ0 → (𝑌 + 1) ∈ ℕ0)
2 eleq1a 2908 . . . . . . . . . . . . 13 ((𝑌 + 1) ∈ ℕ0 → ((♯‘𝑉) = (𝑌 + 1) → (♯‘𝑉) ∈ ℕ0))
32adantr 483 . . . . . . . . . . . 12 (((𝑌 + 1) ∈ ℕ0𝑉𝑊) → ((♯‘𝑉) = (𝑌 + 1) → (♯‘𝑉) ∈ ℕ0))
43imp 409 . . . . . . . . . . 11 ((((𝑌 + 1) ∈ ℕ0𝑉𝑊) ∧ (♯‘𝑉) = (𝑌 + 1)) → (♯‘𝑉) ∈ ℕ0)
5 hashclb 13720 . . . . . . . . . . . 12 (𝑉𝑊 → (𝑉 ∈ Fin ↔ (♯‘𝑉) ∈ ℕ0))
65ad2antlr 725 . . . . . . . . . . 11 ((((𝑌 + 1) ∈ ℕ0𝑉𝑊) ∧ (♯‘𝑉) = (𝑌 + 1)) → (𝑉 ∈ Fin ↔ (♯‘𝑉) ∈ ℕ0))
74, 6mpbird 259 . . . . . . . . . 10 ((((𝑌 + 1) ∈ ℕ0𝑉𝑊) ∧ (♯‘𝑉) = (𝑌 + 1)) → 𝑉 ∈ Fin)
87ex 415 . . . . . . . . 9 (((𝑌 + 1) ∈ ℕ0𝑉𝑊) → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin))
98ex 415 . . . . . . . 8 ((𝑌 + 1) ∈ ℕ0 → (𝑉𝑊 → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin)))
101, 9syl 17 . . . . . . 7 (𝑌 ∈ ℕ0 → (𝑉𝑊 → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin)))
1110impcom 410 . . . . . 6 ((𝑉𝑊𝑌 ∈ ℕ0) → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin))
12113adant2 1127 . . . . 5 ((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin))
1312imp 409 . . . 4 (((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → 𝑉 ∈ Fin)
14 snssi 4741 . . . . . 6 (𝑁𝑉 → {𝑁} ⊆ 𝑉)
15143ad2ant2 1130 . . . . 5 ((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) → {𝑁} ⊆ 𝑉)
1615adantr 483 . . . 4 (((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → {𝑁} ⊆ 𝑉)
17 hashssdif 13774 . . . 4 ((𝑉 ∈ Fin ∧ {𝑁} ⊆ 𝑉) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − (♯‘{𝑁})))
1813, 16, 17syl2anc 586 . . 3 (((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − (♯‘{𝑁})))
19 oveq1 7163 . . . 4 ((♯‘𝑉) = (𝑌 + 1) → ((♯‘𝑉) − (♯‘{𝑁})) = ((𝑌 + 1) − (♯‘{𝑁})))
20 hashsng 13731 . . . . . . 7 (𝑁𝑉 → (♯‘{𝑁}) = 1)
2120oveq2d 7172 . . . . . 6 (𝑁𝑉 → ((𝑌 + 1) − (♯‘{𝑁})) = ((𝑌 + 1) − 1))
22213ad2ant2 1130 . . . . 5 ((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) → ((𝑌 + 1) − (♯‘{𝑁})) = ((𝑌 + 1) − 1))
23 nn0cn 11908 . . . . . . 7 (𝑌 ∈ ℕ0𝑌 ∈ ℂ)
24 1cnd 10636 . . . . . . 7 (𝑌 ∈ ℕ0 → 1 ∈ ℂ)
2523, 24pncand 10998 . . . . . 6 (𝑌 ∈ ℕ0 → ((𝑌 + 1) − 1) = 𝑌)
26253ad2ant3 1131 . . . . 5 ((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) → ((𝑌 + 1) − 1) = 𝑌)
2722, 26eqtrd 2856 . . . 4 ((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) → ((𝑌 + 1) − (♯‘{𝑁})) = 𝑌)
2819, 27sylan9eqr 2878 . . 3 (((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → ((♯‘𝑉) − (♯‘{𝑁})) = 𝑌)
2918, 28eqtrd 2856 . 2 (((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → (♯‘(𝑉 ∖ {𝑁})) = 𝑌)
3029ex 415 1 ((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) → ((♯‘𝑉) = (𝑌 + 1) → (♯‘(𝑉 ∖ {𝑁})) = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  cdif 3933  wss 3936  {csn 4567  cfv 6355  (class class class)co 7156  Fincfn 8509  1c1 10538   + caddc 10540  cmin 10870  0cn0 11898  chash 13691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-hash 13692
This theorem is referenced by:  fi1uzind  13856  brfi1indALT  13859  cusgrsize2inds  27235
  Copyright terms: Public domain W3C validator