![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashdifsnp1 | Structured version Visualization version GIF version |
Description: If the size of a set is a nonnegative integer increased by 1, the size of the set with one of its elements removed is this nonnegative integer. (Contributed by Alexander van der Vekens, 7-Jan-2018.) |
Ref | Expression |
---|---|
hashdifsnp1 | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0) → ((♯‘𝑉) = (𝑌 + 1) → (♯‘(𝑉 ∖ {𝑁})) = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2nn0 12509 | . . . . . . . 8 ⊢ (𝑌 ∈ ℕ0 → (𝑌 + 1) ∈ ℕ0) | |
2 | eleq1a 2820 | . . . . . . . . . . . . 13 ⊢ ((𝑌 + 1) ∈ ℕ0 → ((♯‘𝑉) = (𝑌 + 1) → (♯‘𝑉) ∈ ℕ0)) | |
3 | 2 | adantr 480 | . . . . . . . . . . . 12 ⊢ (((𝑌 + 1) ∈ ℕ0 ∧ 𝑉 ∈ 𝑊) → ((♯‘𝑉) = (𝑌 + 1) → (♯‘𝑉) ∈ ℕ0)) |
4 | 3 | imp 406 | . . . . . . . . . . 11 ⊢ ((((𝑌 + 1) ∈ ℕ0 ∧ 𝑉 ∈ 𝑊) ∧ (♯‘𝑉) = (𝑌 + 1)) → (♯‘𝑉) ∈ ℕ0) |
5 | hashclb 14315 | . . . . . . . . . . . 12 ⊢ (𝑉 ∈ 𝑊 → (𝑉 ∈ Fin ↔ (♯‘𝑉) ∈ ℕ0)) | |
6 | 5 | ad2antlr 724 | . . . . . . . . . . 11 ⊢ ((((𝑌 + 1) ∈ ℕ0 ∧ 𝑉 ∈ 𝑊) ∧ (♯‘𝑉) = (𝑌 + 1)) → (𝑉 ∈ Fin ↔ (♯‘𝑉) ∈ ℕ0)) |
7 | 4, 6 | mpbird 257 | . . . . . . . . . 10 ⊢ ((((𝑌 + 1) ∈ ℕ0 ∧ 𝑉 ∈ 𝑊) ∧ (♯‘𝑉) = (𝑌 + 1)) → 𝑉 ∈ Fin) |
8 | 7 | ex 412 | . . . . . . . . 9 ⊢ (((𝑌 + 1) ∈ ℕ0 ∧ 𝑉 ∈ 𝑊) → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin)) |
9 | 8 | ex 412 | . . . . . . . 8 ⊢ ((𝑌 + 1) ∈ ℕ0 → (𝑉 ∈ 𝑊 → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin))) |
10 | 1, 9 | syl 17 | . . . . . . 7 ⊢ (𝑌 ∈ ℕ0 → (𝑉 ∈ 𝑊 → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin))) |
11 | 10 | impcom 407 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0) → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin)) |
12 | 11 | 3adant2 1128 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0) → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin)) |
13 | 12 | imp 406 | . . . 4 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → 𝑉 ∈ Fin) |
14 | snssi 4803 | . . . . . 6 ⊢ (𝑁 ∈ 𝑉 → {𝑁} ⊆ 𝑉) | |
15 | 14 | 3ad2ant2 1131 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0) → {𝑁} ⊆ 𝑉) |
16 | 15 | adantr 480 | . . . 4 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → {𝑁} ⊆ 𝑉) |
17 | hashssdif 14369 | . . . 4 ⊢ ((𝑉 ∈ Fin ∧ {𝑁} ⊆ 𝑉) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − (♯‘{𝑁}))) | |
18 | 13, 16, 17 | syl2anc 583 | . . 3 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − (♯‘{𝑁}))) |
19 | oveq1 7408 | . . . 4 ⊢ ((♯‘𝑉) = (𝑌 + 1) → ((♯‘𝑉) − (♯‘{𝑁})) = ((𝑌 + 1) − (♯‘{𝑁}))) | |
20 | hashsng 14326 | . . . . . . 7 ⊢ (𝑁 ∈ 𝑉 → (♯‘{𝑁}) = 1) | |
21 | 20 | oveq2d 7417 | . . . . . 6 ⊢ (𝑁 ∈ 𝑉 → ((𝑌 + 1) − (♯‘{𝑁})) = ((𝑌 + 1) − 1)) |
22 | 21 | 3ad2ant2 1131 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0) → ((𝑌 + 1) − (♯‘{𝑁})) = ((𝑌 + 1) − 1)) |
23 | nn0cn 12479 | . . . . . . 7 ⊢ (𝑌 ∈ ℕ0 → 𝑌 ∈ ℂ) | |
24 | 1cnd 11206 | . . . . . . 7 ⊢ (𝑌 ∈ ℕ0 → 1 ∈ ℂ) | |
25 | 23, 24 | pncand 11569 | . . . . . 6 ⊢ (𝑌 ∈ ℕ0 → ((𝑌 + 1) − 1) = 𝑌) |
26 | 25 | 3ad2ant3 1132 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0) → ((𝑌 + 1) − 1) = 𝑌) |
27 | 22, 26 | eqtrd 2764 | . . . 4 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0) → ((𝑌 + 1) − (♯‘{𝑁})) = 𝑌) |
28 | 19, 27 | sylan9eqr 2786 | . . 3 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → ((♯‘𝑉) − (♯‘{𝑁})) = 𝑌) |
29 | 18, 28 | eqtrd 2764 | . 2 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → (♯‘(𝑉 ∖ {𝑁})) = 𝑌) |
30 | 29 | ex 412 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0) → ((♯‘𝑉) = (𝑌 + 1) → (♯‘(𝑉 ∖ {𝑁})) = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∖ cdif 3937 ⊆ wss 3940 {csn 4620 ‘cfv 6533 (class class class)co 7401 Fincfn 8935 1c1 11107 + caddc 11109 − cmin 11441 ℕ0cn0 12469 ♯chash 14287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-oadd 8465 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-dju 9892 df-card 9930 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-n0 12470 df-z 12556 df-uz 12820 df-fz 13482 df-hash 14288 |
This theorem is referenced by: fi1uzind 14455 brfi1indALT 14458 cusgrsize2inds 29179 fsuppind 41651 |
Copyright terms: Public domain | W3C validator |