![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashdifsnp1 | Structured version Visualization version GIF version |
Description: If the size of a set is a nonnegative integer increased by 1, the size of the set with one of its elements removed is this nonnegative integer. (Contributed by Alexander van der Vekens, 7-Jan-2018.) |
Ref | Expression |
---|---|
hashdifsnp1 | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0) → ((♯‘𝑉) = (𝑌 + 1) → (♯‘(𝑉 ∖ {𝑁})) = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2nn0 12564 | . . . . . . . 8 ⊢ (𝑌 ∈ ℕ0 → (𝑌 + 1) ∈ ℕ0) | |
2 | eleq1a 2821 | . . . . . . . . . . . . 13 ⊢ ((𝑌 + 1) ∈ ℕ0 → ((♯‘𝑉) = (𝑌 + 1) → (♯‘𝑉) ∈ ℕ0)) | |
3 | 2 | adantr 479 | . . . . . . . . . . . 12 ⊢ (((𝑌 + 1) ∈ ℕ0 ∧ 𝑉 ∈ 𝑊) → ((♯‘𝑉) = (𝑌 + 1) → (♯‘𝑉) ∈ ℕ0)) |
4 | 3 | imp 405 | . . . . . . . . . . 11 ⊢ ((((𝑌 + 1) ∈ ℕ0 ∧ 𝑉 ∈ 𝑊) ∧ (♯‘𝑉) = (𝑌 + 1)) → (♯‘𝑉) ∈ ℕ0) |
5 | hashclb 14375 | . . . . . . . . . . . 12 ⊢ (𝑉 ∈ 𝑊 → (𝑉 ∈ Fin ↔ (♯‘𝑉) ∈ ℕ0)) | |
6 | 5 | ad2antlr 725 | . . . . . . . . . . 11 ⊢ ((((𝑌 + 1) ∈ ℕ0 ∧ 𝑉 ∈ 𝑊) ∧ (♯‘𝑉) = (𝑌 + 1)) → (𝑉 ∈ Fin ↔ (♯‘𝑉) ∈ ℕ0)) |
7 | 4, 6 | mpbird 256 | . . . . . . . . . 10 ⊢ ((((𝑌 + 1) ∈ ℕ0 ∧ 𝑉 ∈ 𝑊) ∧ (♯‘𝑉) = (𝑌 + 1)) → 𝑉 ∈ Fin) |
8 | 7 | ex 411 | . . . . . . . . 9 ⊢ (((𝑌 + 1) ∈ ℕ0 ∧ 𝑉 ∈ 𝑊) → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin)) |
9 | 8 | ex 411 | . . . . . . . 8 ⊢ ((𝑌 + 1) ∈ ℕ0 → (𝑉 ∈ 𝑊 → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin))) |
10 | 1, 9 | syl 17 | . . . . . . 7 ⊢ (𝑌 ∈ ℕ0 → (𝑉 ∈ 𝑊 → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin))) |
11 | 10 | impcom 406 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0) → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin)) |
12 | 11 | 3adant2 1128 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0) → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin)) |
13 | 12 | imp 405 | . . . 4 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → 𝑉 ∈ Fin) |
14 | snssi 4817 | . . . . . 6 ⊢ (𝑁 ∈ 𝑉 → {𝑁} ⊆ 𝑉) | |
15 | 14 | 3ad2ant2 1131 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0) → {𝑁} ⊆ 𝑉) |
16 | 15 | adantr 479 | . . . 4 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → {𝑁} ⊆ 𝑉) |
17 | hashssdif 14429 | . . . 4 ⊢ ((𝑉 ∈ Fin ∧ {𝑁} ⊆ 𝑉) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − (♯‘{𝑁}))) | |
18 | 13, 16, 17 | syl2anc 582 | . . 3 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − (♯‘{𝑁}))) |
19 | oveq1 7431 | . . . 4 ⊢ ((♯‘𝑉) = (𝑌 + 1) → ((♯‘𝑉) − (♯‘{𝑁})) = ((𝑌 + 1) − (♯‘{𝑁}))) | |
20 | hashsng 14386 | . . . . . . 7 ⊢ (𝑁 ∈ 𝑉 → (♯‘{𝑁}) = 1) | |
21 | 20 | oveq2d 7440 | . . . . . 6 ⊢ (𝑁 ∈ 𝑉 → ((𝑌 + 1) − (♯‘{𝑁})) = ((𝑌 + 1) − 1)) |
22 | 21 | 3ad2ant2 1131 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0) → ((𝑌 + 1) − (♯‘{𝑁})) = ((𝑌 + 1) − 1)) |
23 | nn0cn 12534 | . . . . . . 7 ⊢ (𝑌 ∈ ℕ0 → 𝑌 ∈ ℂ) | |
24 | 1cnd 11259 | . . . . . . 7 ⊢ (𝑌 ∈ ℕ0 → 1 ∈ ℂ) | |
25 | 23, 24 | pncand 11622 | . . . . . 6 ⊢ (𝑌 ∈ ℕ0 → ((𝑌 + 1) − 1) = 𝑌) |
26 | 25 | 3ad2ant3 1132 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0) → ((𝑌 + 1) − 1) = 𝑌) |
27 | 22, 26 | eqtrd 2766 | . . . 4 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0) → ((𝑌 + 1) − (♯‘{𝑁})) = 𝑌) |
28 | 19, 27 | sylan9eqr 2788 | . . 3 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → ((♯‘𝑉) − (♯‘{𝑁})) = 𝑌) |
29 | 18, 28 | eqtrd 2766 | . 2 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → (♯‘(𝑉 ∖ {𝑁})) = 𝑌) |
30 | 29 | ex 411 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0) → ((♯‘𝑉) = (𝑌 + 1) → (♯‘(𝑉 ∖ {𝑁})) = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ∖ cdif 3944 ⊆ wss 3947 {csn 4633 ‘cfv 6554 (class class class)co 7424 Fincfn 8974 1c1 11159 + caddc 11161 − cmin 11494 ℕ0cn0 12524 ♯chash 14347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-oadd 8500 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-dju 9944 df-card 9982 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-n0 12525 df-z 12611 df-uz 12875 df-fz 13539 df-hash 14348 |
This theorem is referenced by: fi1uzind 14516 brfi1indALT 14519 cusgrsize2inds 29390 fsuppind 42062 |
Copyright terms: Public domain | W3C validator |