MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashdifsnp1 Structured version   Visualization version   GIF version

Theorem hashdifsnp1 14454
Description: If the size of a set is a nonnegative integer increased by 1, the size of the set with one of its elements removed is this nonnegative integer. (Contributed by Alexander van der Vekens, 7-Jan-2018.)
Assertion
Ref Expression
hashdifsnp1 ((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) → ((♯‘𝑉) = (𝑌 + 1) → (♯‘(𝑉 ∖ {𝑁})) = 𝑌))

Proof of Theorem hashdifsnp1
StepHypRef Expression
1 peano2nn0 12509 . . . . . . . 8 (𝑌 ∈ ℕ0 → (𝑌 + 1) ∈ ℕ0)
2 eleq1a 2820 . . . . . . . . . . . . 13 ((𝑌 + 1) ∈ ℕ0 → ((♯‘𝑉) = (𝑌 + 1) → (♯‘𝑉) ∈ ℕ0))
32adantr 480 . . . . . . . . . . . 12 (((𝑌 + 1) ∈ ℕ0𝑉𝑊) → ((♯‘𝑉) = (𝑌 + 1) → (♯‘𝑉) ∈ ℕ0))
43imp 406 . . . . . . . . . . 11 ((((𝑌 + 1) ∈ ℕ0𝑉𝑊) ∧ (♯‘𝑉) = (𝑌 + 1)) → (♯‘𝑉) ∈ ℕ0)
5 hashclb 14315 . . . . . . . . . . . 12 (𝑉𝑊 → (𝑉 ∈ Fin ↔ (♯‘𝑉) ∈ ℕ0))
65ad2antlr 724 . . . . . . . . . . 11 ((((𝑌 + 1) ∈ ℕ0𝑉𝑊) ∧ (♯‘𝑉) = (𝑌 + 1)) → (𝑉 ∈ Fin ↔ (♯‘𝑉) ∈ ℕ0))
74, 6mpbird 257 . . . . . . . . . 10 ((((𝑌 + 1) ∈ ℕ0𝑉𝑊) ∧ (♯‘𝑉) = (𝑌 + 1)) → 𝑉 ∈ Fin)
87ex 412 . . . . . . . . 9 (((𝑌 + 1) ∈ ℕ0𝑉𝑊) → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin))
98ex 412 . . . . . . . 8 ((𝑌 + 1) ∈ ℕ0 → (𝑉𝑊 → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin)))
101, 9syl 17 . . . . . . 7 (𝑌 ∈ ℕ0 → (𝑉𝑊 → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin)))
1110impcom 407 . . . . . 6 ((𝑉𝑊𝑌 ∈ ℕ0) → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin))
12113adant2 1128 . . . . 5 ((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin))
1312imp 406 . . . 4 (((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → 𝑉 ∈ Fin)
14 snssi 4803 . . . . . 6 (𝑁𝑉 → {𝑁} ⊆ 𝑉)
15143ad2ant2 1131 . . . . 5 ((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) → {𝑁} ⊆ 𝑉)
1615adantr 480 . . . 4 (((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → {𝑁} ⊆ 𝑉)
17 hashssdif 14369 . . . 4 ((𝑉 ∈ Fin ∧ {𝑁} ⊆ 𝑉) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − (♯‘{𝑁})))
1813, 16, 17syl2anc 583 . . 3 (((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − (♯‘{𝑁})))
19 oveq1 7408 . . . 4 ((♯‘𝑉) = (𝑌 + 1) → ((♯‘𝑉) − (♯‘{𝑁})) = ((𝑌 + 1) − (♯‘{𝑁})))
20 hashsng 14326 . . . . . . 7 (𝑁𝑉 → (♯‘{𝑁}) = 1)
2120oveq2d 7417 . . . . . 6 (𝑁𝑉 → ((𝑌 + 1) − (♯‘{𝑁})) = ((𝑌 + 1) − 1))
22213ad2ant2 1131 . . . . 5 ((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) → ((𝑌 + 1) − (♯‘{𝑁})) = ((𝑌 + 1) − 1))
23 nn0cn 12479 . . . . . . 7 (𝑌 ∈ ℕ0𝑌 ∈ ℂ)
24 1cnd 11206 . . . . . . 7 (𝑌 ∈ ℕ0 → 1 ∈ ℂ)
2523, 24pncand 11569 . . . . . 6 (𝑌 ∈ ℕ0 → ((𝑌 + 1) − 1) = 𝑌)
26253ad2ant3 1132 . . . . 5 ((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) → ((𝑌 + 1) − 1) = 𝑌)
2722, 26eqtrd 2764 . . . 4 ((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) → ((𝑌 + 1) − (♯‘{𝑁})) = 𝑌)
2819, 27sylan9eqr 2786 . . 3 (((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → ((♯‘𝑉) − (♯‘{𝑁})) = 𝑌)
2918, 28eqtrd 2764 . 2 (((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → (♯‘(𝑉 ∖ {𝑁})) = 𝑌)
3029ex 412 1 ((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) → ((♯‘𝑉) = (𝑌 + 1) → (♯‘(𝑉 ∖ {𝑁})) = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  cdif 3937  wss 3940  {csn 4620  cfv 6533  (class class class)co 7401  Fincfn 8935  1c1 11107   + caddc 11109  cmin 11441  0cn0 12469  chash 14287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-oadd 8465  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-n0 12470  df-z 12556  df-uz 12820  df-fz 13482  df-hash 14288
This theorem is referenced by:  fi1uzind  14455  brfi1indALT  14458  cusgrsize2inds  29179  fsuppind  41651
  Copyright terms: Public domain W3C validator