MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashdifsnp1 Structured version   Visualization version   GIF version

Theorem hashdifsnp1 14045
Description: If the size of a set is a nonnegative integer increased by 1, the size of the set with one of its elements removed is this nonnegative integer. (Contributed by Alexander van der Vekens, 7-Jan-2018.)
Assertion
Ref Expression
hashdifsnp1 ((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) → ((♯‘𝑉) = (𝑌 + 1) → (♯‘(𝑉 ∖ {𝑁})) = 𝑌))

Proof of Theorem hashdifsnp1
StepHypRef Expression
1 peano2nn0 12113 . . . . . . . 8 (𝑌 ∈ ℕ0 → (𝑌 + 1) ∈ ℕ0)
2 eleq1a 2829 . . . . . . . . . . . . 13 ((𝑌 + 1) ∈ ℕ0 → ((♯‘𝑉) = (𝑌 + 1) → (♯‘𝑉) ∈ ℕ0))
32adantr 484 . . . . . . . . . . . 12 (((𝑌 + 1) ∈ ℕ0𝑉𝑊) → ((♯‘𝑉) = (𝑌 + 1) → (♯‘𝑉) ∈ ℕ0))
43imp 410 . . . . . . . . . . 11 ((((𝑌 + 1) ∈ ℕ0𝑉𝑊) ∧ (♯‘𝑉) = (𝑌 + 1)) → (♯‘𝑉) ∈ ℕ0)
5 hashclb 13908 . . . . . . . . . . . 12 (𝑉𝑊 → (𝑉 ∈ Fin ↔ (♯‘𝑉) ∈ ℕ0))
65ad2antlr 727 . . . . . . . . . . 11 ((((𝑌 + 1) ∈ ℕ0𝑉𝑊) ∧ (♯‘𝑉) = (𝑌 + 1)) → (𝑉 ∈ Fin ↔ (♯‘𝑉) ∈ ℕ0))
74, 6mpbird 260 . . . . . . . . . 10 ((((𝑌 + 1) ∈ ℕ0𝑉𝑊) ∧ (♯‘𝑉) = (𝑌 + 1)) → 𝑉 ∈ Fin)
87ex 416 . . . . . . . . 9 (((𝑌 + 1) ∈ ℕ0𝑉𝑊) → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin))
98ex 416 . . . . . . . 8 ((𝑌 + 1) ∈ ℕ0 → (𝑉𝑊 → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin)))
101, 9syl 17 . . . . . . 7 (𝑌 ∈ ℕ0 → (𝑉𝑊 → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin)))
1110impcom 411 . . . . . 6 ((𝑉𝑊𝑌 ∈ ℕ0) → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin))
12113adant2 1133 . . . . 5 ((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) → ((♯‘𝑉) = (𝑌 + 1) → 𝑉 ∈ Fin))
1312imp 410 . . . 4 (((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → 𝑉 ∈ Fin)
14 snssi 4711 . . . . . 6 (𝑁𝑉 → {𝑁} ⊆ 𝑉)
15143ad2ant2 1136 . . . . 5 ((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) → {𝑁} ⊆ 𝑉)
1615adantr 484 . . . 4 (((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → {𝑁} ⊆ 𝑉)
17 hashssdif 13962 . . . 4 ((𝑉 ∈ Fin ∧ {𝑁} ⊆ 𝑉) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − (♯‘{𝑁})))
1813, 16, 17syl2anc 587 . . 3 (((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − (♯‘{𝑁})))
19 oveq1 7209 . . . 4 ((♯‘𝑉) = (𝑌 + 1) → ((♯‘𝑉) − (♯‘{𝑁})) = ((𝑌 + 1) − (♯‘{𝑁})))
20 hashsng 13919 . . . . . . 7 (𝑁𝑉 → (♯‘{𝑁}) = 1)
2120oveq2d 7218 . . . . . 6 (𝑁𝑉 → ((𝑌 + 1) − (♯‘{𝑁})) = ((𝑌 + 1) − 1))
22213ad2ant2 1136 . . . . 5 ((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) → ((𝑌 + 1) − (♯‘{𝑁})) = ((𝑌 + 1) − 1))
23 nn0cn 12083 . . . . . . 7 (𝑌 ∈ ℕ0𝑌 ∈ ℂ)
24 1cnd 10811 . . . . . . 7 (𝑌 ∈ ℕ0 → 1 ∈ ℂ)
2523, 24pncand 11173 . . . . . 6 (𝑌 ∈ ℕ0 → ((𝑌 + 1) − 1) = 𝑌)
26253ad2ant3 1137 . . . . 5 ((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) → ((𝑌 + 1) − 1) = 𝑌)
2722, 26eqtrd 2774 . . . 4 ((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) → ((𝑌 + 1) − (♯‘{𝑁})) = 𝑌)
2819, 27sylan9eqr 2796 . . 3 (((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → ((♯‘𝑉) − (♯‘{𝑁})) = 𝑌)
2918, 28eqtrd 2774 . 2 (((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = (𝑌 + 1)) → (♯‘(𝑉 ∖ {𝑁})) = 𝑌)
3029ex 416 1 ((𝑉𝑊𝑁𝑉𝑌 ∈ ℕ0) → ((♯‘𝑉) = (𝑌 + 1) → (♯‘(𝑉 ∖ {𝑁})) = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  cdif 3854  wss 3857  {csn 4531  cfv 6369  (class class class)co 7202  Fincfn 8615  1c1 10713   + caddc 10715  cmin 11045  0cn0 12073  chash 13879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-oadd 8195  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-dju 9500  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-n0 12074  df-z 12160  df-uz 12422  df-fz 13079  df-hash 13880
This theorem is referenced by:  fi1uzind  14046  brfi1indALT  14049  cusgrsize2inds  27513  fsuppind  39941
  Copyright terms: Public domain W3C validator