Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhilipval Structured version   Visualization version   GIF version

Theorem hlhilipval 39112
Description: Value of inner product operation for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
Hypotheses
Ref Expression
hlhilip.h 𝐻 = (LHyp‘𝐾)
hlhilip.l 𝐿 = ((DVecH‘𝐾)‘𝑊)
hlhilip.v 𝑉 = (Base‘𝐿)
hlhilip.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hlhilip.u 𝑈 = ((HLHil‘𝐾)‘𝑊)
hlhilip.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hlhilip.i , = (·𝑖𝑈)
hlhilip.x (𝜑𝑋𝑉)
hlhilip.y (𝜑𝑌𝑉)
Assertion
Ref Expression
hlhilipval (𝜑 → (𝑋 , 𝑌) = ((𝑆𝑌)‘𝑋))

Proof of Theorem hlhilipval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlhilip.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 hlhilip.l . . . . 5 𝐿 = ((DVecH‘𝐾)‘𝑊)
3 hlhilip.v . . . . 5 𝑉 = (Base‘𝐿)
4 hlhilip.s . . . . 5 𝑆 = ((HDMap‘𝐾)‘𝑊)
5 hlhilip.u . . . . 5 𝑈 = ((HLHil‘𝐾)‘𝑊)
6 hlhilip.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 eqid 2820 . . . . 5 (𝑥𝑉, 𝑦𝑉 ↦ ((𝑆𝑦)‘𝑥)) = (𝑥𝑉, 𝑦𝑉 ↦ ((𝑆𝑦)‘𝑥))
81, 2, 3, 4, 5, 6, 7hlhilip 39111 . . . 4 (𝜑 → (𝑥𝑉, 𝑦𝑉 ↦ ((𝑆𝑦)‘𝑥)) = (·𝑖𝑈))
9 hlhilip.i . . . 4 , = (·𝑖𝑈)
108, 9syl6reqr 2874 . . 3 (𝜑, = (𝑥𝑉, 𝑦𝑉 ↦ ((𝑆𝑦)‘𝑥)))
1110oveqd 7154 . 2 (𝜑 → (𝑋 , 𝑌) = (𝑋(𝑥𝑉, 𝑦𝑉 ↦ ((𝑆𝑦)‘𝑥))𝑌))
12 hlhilip.x . . 3 (𝜑𝑋𝑉)
13 hlhilip.y . . 3 (𝜑𝑌𝑉)
14 fveq2 6651 . . . 4 (𝑥 = 𝑋 → ((𝑆𝑦)‘𝑥) = ((𝑆𝑦)‘𝑋))
15 fveq2 6651 . . . . 5 (𝑦 = 𝑌 → (𝑆𝑦) = (𝑆𝑌))
1615fveq1d 6653 . . . 4 (𝑦 = 𝑌 → ((𝑆𝑦)‘𝑋) = ((𝑆𝑌)‘𝑋))
17 fvex 6664 . . . 4 ((𝑆𝑌)‘𝑋) ∈ V
1814, 16, 7, 17ovmpo 7291 . . 3 ((𝑋𝑉𝑌𝑉) → (𝑋(𝑥𝑉, 𝑦𝑉 ↦ ((𝑆𝑦)‘𝑥))𝑌) = ((𝑆𝑌)‘𝑋))
1912, 13, 18syl2anc 586 . 2 (𝜑 → (𝑋(𝑥𝑉, 𝑦𝑉 ↦ ((𝑆𝑦)‘𝑥))𝑌) = ((𝑆𝑌)‘𝑋))
2011, 19eqtrd 2855 1 (𝜑 → (𝑋 , 𝑌) = ((𝑆𝑌)‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  cfv 6336  (class class class)co 7137  cmpo 7139  Basecbs 16461  ·𝑖cip 16548  HLchlt 36513  LHypclh 37147  DVecHcdvh 38241  HDMapchdma 38955  HLHilchlh 39095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7442  ax-cnex 10574  ax-resscn 10575  ax-1cn 10576  ax-icn 10577  ax-addcl 10578  ax-addrcl 10579  ax-mulcl 10580  ax-mulrcl 10581  ax-mulcom 10582  ax-addass 10583  ax-mulass 10584  ax-distr 10585  ax-i2m1 10586  ax-1ne0 10587  ax-1rid 10588  ax-rnegex 10589  ax-rrecex 10590  ax-cnre 10591  ax-pre-lttri 10592  ax-pre-lttrn 10593  ax-pre-ltadd 10594  ax-pre-mulgt0 10595
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3012  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3483  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7095  df-ov 7140  df-oprab 7141  df-mpo 7142  df-om 7562  df-1st 7670  df-2nd 7671  df-wrecs 7928  df-recs 7989  df-rdg 8027  df-1o 8083  df-oadd 8087  df-er 8270  df-en 8491  df-dom 8492  df-sdom 8493  df-fin 8494  df-pnf 10658  df-mnf 10659  df-xr 10660  df-ltxr 10661  df-le 10662  df-sub 10853  df-neg 10854  df-nn 11620  df-2 11682  df-3 11683  df-4 11684  df-5 11685  df-6 11686  df-7 11687  df-8 11688  df-n0 11880  df-z 11964  df-uz 12226  df-fz 12878  df-struct 16463  df-ndx 16464  df-slot 16465  df-base 16467  df-plusg 16556  df-sca 16559  df-vsca 16560  df-ip 16561  df-hlhil 39096
This theorem is referenced by:  hlhilocv  39120  hlhilphllem  39122
  Copyright terms: Public domain W3C validator