| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhilipval | Structured version Visualization version GIF version | ||
| Description: Value of inner product operation for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
| Ref | Expression |
|---|---|
| hlhilip.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hlhilip.l | ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) |
| hlhilip.v | ⊢ 𝑉 = (Base‘𝐿) |
| hlhilip.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
| hlhilip.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
| hlhilip.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hlhilip.i | ⊢ , = (·𝑖‘𝑈) |
| hlhilip.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| hlhilip.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| hlhilipval | ⊢ (𝜑 → (𝑋 , 𝑌) = ((𝑆‘𝑌)‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlhilip.i | . . . 4 ⊢ , = (·𝑖‘𝑈) | |
| 2 | hlhilip.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | hlhilip.l | . . . . 5 ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) | |
| 4 | hlhilip.v | . . . . 5 ⊢ 𝑉 = (Base‘𝐿) | |
| 5 | hlhilip.s | . . . . 5 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
| 6 | hlhilip.u | . . . . 5 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
| 7 | hlhilip.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 8 | eqid 2730 | . . . . 5 ⊢ (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝑆‘𝑦)‘𝑥)) = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝑆‘𝑦)‘𝑥)) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | hlhilip 41949 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝑆‘𝑦)‘𝑥)) = (·𝑖‘𝑈)) |
| 10 | 1, 9 | eqtr4id 2784 | . . 3 ⊢ (𝜑 → , = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝑆‘𝑦)‘𝑥))) |
| 11 | 10 | oveqd 7407 | . 2 ⊢ (𝜑 → (𝑋 , 𝑌) = (𝑋(𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝑆‘𝑦)‘𝑥))𝑌)) |
| 12 | hlhilip.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 13 | hlhilip.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 14 | fveq2 6861 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑆‘𝑦)‘𝑥) = ((𝑆‘𝑦)‘𝑋)) | |
| 15 | fveq2 6861 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑆‘𝑦) = (𝑆‘𝑌)) | |
| 16 | 15 | fveq1d 6863 | . . . 4 ⊢ (𝑦 = 𝑌 → ((𝑆‘𝑦)‘𝑋) = ((𝑆‘𝑌)‘𝑋)) |
| 17 | fvex 6874 | . . . 4 ⊢ ((𝑆‘𝑌)‘𝑋) ∈ V | |
| 18 | 14, 16, 8, 17 | ovmpo 7552 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋(𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝑆‘𝑦)‘𝑥))𝑌) = ((𝑆‘𝑌)‘𝑋)) |
| 19 | 12, 13, 18 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑋(𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝑆‘𝑦)‘𝑥))𝑌) = ((𝑆‘𝑌)‘𝑋)) |
| 20 | 11, 19 | eqtrd 2765 | 1 ⊢ (𝜑 → (𝑋 , 𝑌) = ((𝑆‘𝑌)‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 Basecbs 17186 ·𝑖cip 17232 HLchlt 39350 LHypclh 39985 DVecHcdvh 41079 HDMapchdma 41793 HLHilchlh 41933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-sca 17243 df-vsca 17244 df-ip 17245 df-hlhil 41934 |
| This theorem is referenced by: hlhilocv 41958 hlhilphllem 41960 |
| Copyright terms: Public domain | W3C validator |