Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhilipval | Structured version Visualization version GIF version |
Description: Value of inner product operation for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
Ref | Expression |
---|---|
hlhilip.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hlhilip.l | ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) |
hlhilip.v | ⊢ 𝑉 = (Base‘𝐿) |
hlhilip.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hlhilip.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
hlhilip.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hlhilip.i | ⊢ , = (·𝑖‘𝑈) |
hlhilip.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
hlhilip.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
Ref | Expression |
---|---|
hlhilipval | ⊢ (𝜑 → (𝑋 , 𝑌) = ((𝑆‘𝑌)‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlhilip.i | . . . 4 ⊢ , = (·𝑖‘𝑈) | |
2 | hlhilip.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | hlhilip.l | . . . . 5 ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) | |
4 | hlhilip.v | . . . . 5 ⊢ 𝑉 = (Base‘𝐿) | |
5 | hlhilip.s | . . . . 5 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
6 | hlhilip.u | . . . . 5 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
7 | hlhilip.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
8 | eqid 2758 | . . . . 5 ⊢ (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝑆‘𝑦)‘𝑥)) = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝑆‘𝑦)‘𝑥)) | |
9 | 2, 3, 4, 5, 6, 7, 8 | hlhilip 39550 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝑆‘𝑦)‘𝑥)) = (·𝑖‘𝑈)) |
10 | 1, 9 | eqtr4id 2812 | . . 3 ⊢ (𝜑 → , = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝑆‘𝑦)‘𝑥))) |
11 | 10 | oveqd 7172 | . 2 ⊢ (𝜑 → (𝑋 , 𝑌) = (𝑋(𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝑆‘𝑦)‘𝑥))𝑌)) |
12 | hlhilip.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
13 | hlhilip.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
14 | fveq2 6662 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑆‘𝑦)‘𝑥) = ((𝑆‘𝑦)‘𝑋)) | |
15 | fveq2 6662 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑆‘𝑦) = (𝑆‘𝑌)) | |
16 | 15 | fveq1d 6664 | . . . 4 ⊢ (𝑦 = 𝑌 → ((𝑆‘𝑦)‘𝑋) = ((𝑆‘𝑌)‘𝑋)) |
17 | fvex 6675 | . . . 4 ⊢ ((𝑆‘𝑌)‘𝑋) ∈ V | |
18 | 14, 16, 8, 17 | ovmpo 7310 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋(𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝑆‘𝑦)‘𝑥))𝑌) = ((𝑆‘𝑌)‘𝑋)) |
19 | 12, 13, 18 | syl2anc 587 | . 2 ⊢ (𝜑 → (𝑋(𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝑆‘𝑦)‘𝑥))𝑌) = ((𝑆‘𝑌)‘𝑋)) |
20 | 11, 19 | eqtrd 2793 | 1 ⊢ (𝜑 → (𝑋 , 𝑌) = ((𝑆‘𝑌)‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ‘cfv 6339 (class class class)co 7155 ∈ cmpo 7157 Basecbs 16546 ·𝑖cip 16633 HLchlt 36952 LHypclh 37586 DVecHcdvh 38680 HDMapchdma 39394 HLHilchlh 39534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-1o 8117 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-nn 11680 df-2 11742 df-3 11743 df-4 11744 df-5 11745 df-6 11746 df-7 11747 df-8 11748 df-n0 11940 df-z 12026 df-uz 12288 df-fz 12945 df-struct 16548 df-ndx 16549 df-slot 16550 df-base 16552 df-plusg 16641 df-sca 16644 df-vsca 16645 df-ip 16646 df-hlhil 39535 |
This theorem is referenced by: hlhilocv 39559 hlhilphllem 39561 |
Copyright terms: Public domain | W3C validator |