Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhilslem Structured version   Visualization version   GIF version

Theorem hlhilslem 42110
Description: Lemma for hlhilsbase 42111 etc. (Contributed by Mario Carneiro, 28-Jun-2015.) (Revised by AV, 6-Nov-2024.)
Hypotheses
Ref Expression
hlhilslem.h 𝐻 = (LHyp‘𝐾)
hlhilslem.e 𝐸 = ((EDRing‘𝐾)‘𝑊)
hlhilslem.u 𝑈 = ((HLHil‘𝐾)‘𝑊)
hlhilslem.r 𝑅 = (Scalar‘𝑈)
hlhilslem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hlhilslem.f 𝐹 = Slot (𝐹‘ndx)
hlhilslem.n (𝐹‘ndx) ≠ (*𝑟‘ndx)
hlhilslem.c 𝐶 = (𝐹𝐸)
Assertion
Ref Expression
hlhilslem (𝜑𝐶 = (𝐹𝑅))

Proof of Theorem hlhilslem
StepHypRef Expression
1 hlhilslem.c . . 3 𝐶 = (𝐹𝐸)
2 hlhilslem.f . . . 4 𝐹 = Slot (𝐹‘ndx)
3 hlhilslem.n . . . 4 (𝐹‘ndx) ≠ (*𝑟‘ndx)
42, 3setsnid 17126 . . 3 (𝐹𝐸) = (𝐹‘(𝐸 sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩))
51, 4eqtri 2756 . 2 𝐶 = (𝐹‘(𝐸 sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩))
6 hlhilslem.h . . . . 5 𝐻 = (LHyp‘𝐾)
7 hlhilslem.u . . . . 5 𝑈 = ((HLHil‘𝐾)‘𝑊)
8 hlhilslem.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 hlhilslem.e . . . . 5 𝐸 = ((EDRing‘𝐾)‘𝑊)
10 eqid 2733 . . . . 5 ((HGMap‘𝐾)‘𝑊) = ((HGMap‘𝐾)‘𝑊)
11 eqid 2733 . . . . 5 (𝐸 sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩) = (𝐸 sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)
126, 7, 8, 9, 10, 11hlhilsca 42107 . . . 4 (𝜑 → (𝐸 sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩) = (Scalar‘𝑈))
13 hlhilslem.r . . . 4 𝑅 = (Scalar‘𝑈)
1412, 13eqtr4di 2786 . . 3 (𝜑 → (𝐸 sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩) = 𝑅)
1514fveq2d 6835 . 2 (𝜑 → (𝐹‘(𝐸 sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)) = (𝐹𝑅))
165, 15eqtrid 2780 1 (𝜑𝐶 = (𝐹𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  cop 4583  cfv 6489  (class class class)co 7355   sSet csts 17081  Slot cslot 17099  ndxcnx 17111  *𝑟cstv 17170  Scalarcsca 17171  HLchlt 39522  LHypclh 40156  EDRingcedring 40925  HGMapchg 42055  HLHilchlh 42104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-n0 12393  df-z 12480  df-uz 12743  df-fz 13415  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-plusg 17181  df-sca 17184  df-vsca 17185  df-ip 17186  df-hlhil 42105
This theorem is referenced by:  hlhilsbase  42111  hlhilsplus  42112  hlhilsmul  42113
  Copyright terms: Public domain W3C validator