MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmunb Structured version   Visualization version   GIF version

Theorem prmunb 16467
Description: The primes are unbounded. (Contributed by Paul Chapman, 28-Nov-2012.)
Assertion
Ref Expression
prmunb (𝑁 ∈ ℕ → ∃𝑝 ∈ ℙ 𝑁 < 𝑝)
Distinct variable group:   𝑁,𝑝

Proof of Theorem prmunb
StepHypRef Expression
1 nnnn0 12097 . 2 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 faccl 13849 . . . 4 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
3 elnnuz 12478 . . . . 5 ((!‘𝑁) ∈ ℕ ↔ (!‘𝑁) ∈ (ℤ‘1))
4 eluzp1p1 12466 . . . . . 6 ((!‘𝑁) ∈ (ℤ‘1) → ((!‘𝑁) + 1) ∈ (ℤ‘(1 + 1)))
5 df-2 11893 . . . . . . 7 2 = (1 + 1)
65fveq2i 6720 . . . . . 6 (ℤ‘2) = (ℤ‘(1 + 1))
74, 6eleqtrrdi 2849 . . . . 5 ((!‘𝑁) ∈ (ℤ‘1) → ((!‘𝑁) + 1) ∈ (ℤ‘2))
83, 7sylbi 220 . . . 4 ((!‘𝑁) ∈ ℕ → ((!‘𝑁) + 1) ∈ (ℤ‘2))
9 exprmfct 16261 . . . 4 (((!‘𝑁) + 1) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ ((!‘𝑁) + 1))
102, 8, 93syl 18 . . 3 (𝑁 ∈ ℕ0 → ∃𝑝 ∈ ℙ 𝑝 ∥ ((!‘𝑁) + 1))
11 prmz 16232 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
12 nn0z 12200 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
13 eluz 12452 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑝) ↔ 𝑝𝑁))
1411, 12, 13syl2an 599 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑁 ∈ (ℤ𝑝) ↔ 𝑝𝑁))
15 prmuz2 16253 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
16 eluz2b2 12517 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ (ℤ‘2) ↔ (𝑝 ∈ ℕ ∧ 1 < 𝑝))
1715, 16sylib 221 . . . . . . . . . . . . . . . 16 (𝑝 ∈ ℙ → (𝑝 ∈ ℕ ∧ 1 < 𝑝))
1817adantr 484 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → (𝑝 ∈ ℕ ∧ 1 < 𝑝))
1918simpld 498 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → 𝑝 ∈ ℕ)
2019nnnn0d 12150 . . . . . . . . . . . . 13 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → 𝑝 ∈ ℕ0)
21 eluznn0 12513 . . . . . . . . . . . . 13 ((𝑝 ∈ ℕ0𝑁 ∈ (ℤ𝑝)) → 𝑁 ∈ ℕ0)
2220, 21sylancom 591 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → 𝑁 ∈ ℕ0)
23 nnz 12199 . . . . . . . . . . . 12 ((!‘𝑁) ∈ ℕ → (!‘𝑁) ∈ ℤ)
2422, 2, 233syl 18 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → (!‘𝑁) ∈ ℤ)
2518simprd 499 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → 1 < 𝑝)
26 dvdsfac 15887 . . . . . . . . . . . 12 ((𝑝 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑝)) → 𝑝 ∥ (!‘𝑁))
2719, 26sylancom 591 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → 𝑝 ∥ (!‘𝑁))
28 ndvdsp1 15972 . . . . . . . . . . . 12 (((!‘𝑁) ∈ ℤ ∧ 𝑝 ∈ ℕ ∧ 1 < 𝑝) → (𝑝 ∥ (!‘𝑁) → ¬ 𝑝 ∥ ((!‘𝑁) + 1)))
2928imp 410 . . . . . . . . . . 11 ((((!‘𝑁) ∈ ℤ ∧ 𝑝 ∈ ℕ ∧ 1 < 𝑝) ∧ 𝑝 ∥ (!‘𝑁)) → ¬ 𝑝 ∥ ((!‘𝑁) + 1))
3024, 19, 25, 27, 29syl31anc 1375 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → ¬ 𝑝 ∥ ((!‘𝑁) + 1))
3130ex 416 . . . . . . . . 9 (𝑝 ∈ ℙ → (𝑁 ∈ (ℤ𝑝) → ¬ 𝑝 ∥ ((!‘𝑁) + 1)))
3231adantr 484 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑁 ∈ (ℤ𝑝) → ¬ 𝑝 ∥ ((!‘𝑁) + 1)))
3314, 32sylbird 263 . . . . . . 7 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑝𝑁 → ¬ 𝑝 ∥ ((!‘𝑁) + 1)))
3433con2d 136 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑝 ∥ ((!‘𝑁) + 1) → ¬ 𝑝𝑁))
3534ancoms 462 . . . . 5 ((𝑁 ∈ ℕ0𝑝 ∈ ℙ) → (𝑝 ∥ ((!‘𝑁) + 1) → ¬ 𝑝𝑁))
36 nn0re 12099 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
3711zred 12282 . . . . . 6 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ)
38 ltnle 10912 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑝 ∈ ℝ) → (𝑁 < 𝑝 ↔ ¬ 𝑝𝑁))
3936, 37, 38syl2an 599 . . . . 5 ((𝑁 ∈ ℕ0𝑝 ∈ ℙ) → (𝑁 < 𝑝 ↔ ¬ 𝑝𝑁))
4035, 39sylibrd 262 . . . 4 ((𝑁 ∈ ℕ0𝑝 ∈ ℙ) → (𝑝 ∥ ((!‘𝑁) + 1) → 𝑁 < 𝑝))
4140reximdva 3193 . . 3 (𝑁 ∈ ℕ0 → (∃𝑝 ∈ ℙ 𝑝 ∥ ((!‘𝑁) + 1) → ∃𝑝 ∈ ℙ 𝑁 < 𝑝))
4210, 41mpd 15 . 2 (𝑁 ∈ ℕ0 → ∃𝑝 ∈ ℙ 𝑁 < 𝑝)
431, 42syl 17 1 (𝑁 ∈ ℕ → ∃𝑝 ∈ ℙ 𝑁 < 𝑝)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089  wcel 2110  wrex 3062   class class class wbr 5053  cfv 6380  (class class class)co 7213  cr 10728  1c1 10730   + caddc 10732   < clt 10867  cle 10868  cn 11830  2c2 11885  0cn0 12090  cz 12176  cuz 12438  !cfa 13839  cdvds 15815  cprime 16228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-inf 9059  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-fz 13096  df-seq 13575  df-exp 13636  df-fac 13840  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-dvds 15816  df-prm 16229
This theorem is referenced by:  prminf  16468  prmgaplem6  16609  nn0prpw  34249  prmunb2  41602  etransclem48  43498
  Copyright terms: Public domain W3C validator