Proof of Theorem prmunb
| Step | Hyp | Ref
| Expression |
| 1 | | nnnn0 12535 |
. 2
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
| 2 | | faccl 14323 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (!‘𝑁) ∈
ℕ) |
| 3 | | elnnuz 12923 |
. . . . 5
⊢
((!‘𝑁) ∈
ℕ ↔ (!‘𝑁)
∈ (ℤ≥‘1)) |
| 4 | | eluzp1p1 12907 |
. . . . . 6
⊢
((!‘𝑁) ∈
(ℤ≥‘1) → ((!‘𝑁) + 1) ∈
(ℤ≥‘(1 + 1))) |
| 5 | | df-2 12330 |
. . . . . . 7
⊢ 2 = (1 +
1) |
| 6 | 5 | fveq2i 6908 |
. . . . . 6
⊢
(ℤ≥‘2) = (ℤ≥‘(1 +
1)) |
| 7 | 4, 6 | eleqtrrdi 2851 |
. . . . 5
⊢
((!‘𝑁) ∈
(ℤ≥‘1) → ((!‘𝑁) + 1) ∈
(ℤ≥‘2)) |
| 8 | 3, 7 | sylbi 217 |
. . . 4
⊢
((!‘𝑁) ∈
ℕ → ((!‘𝑁)
+ 1) ∈ (ℤ≥‘2)) |
| 9 | | exprmfct 16742 |
. . . 4
⊢
(((!‘𝑁) + 1)
∈ (ℤ≥‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ ((!‘𝑁) + 1)) |
| 10 | 2, 8, 9 | 3syl 18 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ ∃𝑝 ∈
ℙ 𝑝 ∥
((!‘𝑁) +
1)) |
| 11 | | prmz 16713 |
. . . . . . . . 9
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℤ) |
| 12 | | nn0z 12640 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) |
| 13 | | eluz 12893 |
. . . . . . . . 9
⊢ ((𝑝 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈
(ℤ≥‘𝑝) ↔ 𝑝 ≤ 𝑁)) |
| 14 | 11, 12, 13 | syl2an 596 |
. . . . . . . 8
⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ0)
→ (𝑁 ∈
(ℤ≥‘𝑝) ↔ 𝑝 ≤ 𝑁)) |
| 15 | | prmuz2 16734 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
(ℤ≥‘2)) |
| 16 | | eluz2b2 12964 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 ∈
(ℤ≥‘2) ↔ (𝑝 ∈ ℕ ∧ 1 < 𝑝)) |
| 17 | 15, 16 | sylib 218 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 ∈ ℙ → (𝑝 ∈ ℕ ∧ 1 <
𝑝)) |
| 18 | 17 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘𝑝)) → (𝑝 ∈ ℕ ∧ 1 < 𝑝)) |
| 19 | 18 | simpld 494 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘𝑝)) → 𝑝 ∈ ℕ) |
| 20 | 19 | nnnn0d 12589 |
. . . . . . . . . . . . 13
⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘𝑝)) → 𝑝 ∈ ℕ0) |
| 21 | | eluznn0 12960 |
. . . . . . . . . . . . 13
⊢ ((𝑝 ∈ ℕ0
∧ 𝑁 ∈
(ℤ≥‘𝑝)) → 𝑁 ∈
ℕ0) |
| 22 | 20, 21 | sylancom 588 |
. . . . . . . . . . . 12
⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘𝑝)) → 𝑁 ∈
ℕ0) |
| 23 | | nnz 12636 |
. . . . . . . . . . . 12
⊢
((!‘𝑁) ∈
ℕ → (!‘𝑁)
∈ ℤ) |
| 24 | 22, 2, 23 | 3syl 18 |
. . . . . . . . . . 11
⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘𝑝)) → (!‘𝑁) ∈ ℤ) |
| 25 | 18 | simprd 495 |
. . . . . . . . . . 11
⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘𝑝)) → 1 < 𝑝) |
| 26 | | dvdsfac 16364 |
. . . . . . . . . . . 12
⊢ ((𝑝 ∈ ℕ ∧ 𝑁 ∈
(ℤ≥‘𝑝)) → 𝑝 ∥ (!‘𝑁)) |
| 27 | 19, 26 | sylancom 588 |
. . . . . . . . . . 11
⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘𝑝)) → 𝑝 ∥ (!‘𝑁)) |
| 28 | | ndvdsp1 16449 |
. . . . . . . . . . . 12
⊢
(((!‘𝑁) ∈
ℤ ∧ 𝑝 ∈
ℕ ∧ 1 < 𝑝)
→ (𝑝 ∥
(!‘𝑁) → ¬
𝑝 ∥ ((!‘𝑁) + 1))) |
| 29 | 28 | imp 406 |
. . . . . . . . . . 11
⊢
((((!‘𝑁)
∈ ℤ ∧ 𝑝
∈ ℕ ∧ 1 < 𝑝) ∧ 𝑝 ∥ (!‘𝑁)) → ¬ 𝑝 ∥ ((!‘𝑁) + 1)) |
| 30 | 24, 19, 25, 27, 29 | syl31anc 1374 |
. . . . . . . . . 10
⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘𝑝)) → ¬ 𝑝 ∥ ((!‘𝑁) + 1)) |
| 31 | 30 | ex 412 |
. . . . . . . . 9
⊢ (𝑝 ∈ ℙ → (𝑁 ∈
(ℤ≥‘𝑝) → ¬ 𝑝 ∥ ((!‘𝑁) + 1))) |
| 32 | 31 | adantr 480 |
. . . . . . . 8
⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ0)
→ (𝑁 ∈
(ℤ≥‘𝑝) → ¬ 𝑝 ∥ ((!‘𝑁) + 1))) |
| 33 | 14, 32 | sylbird 260 |
. . . . . . 7
⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ0)
→ (𝑝 ≤ 𝑁 → ¬ 𝑝 ∥ ((!‘𝑁) + 1))) |
| 34 | 33 | con2d 134 |
. . . . . 6
⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ0)
→ (𝑝 ∥
((!‘𝑁) + 1) →
¬ 𝑝 ≤ 𝑁)) |
| 35 | 34 | ancoms 458 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑝 ∈ ℙ)
→ (𝑝 ∥
((!‘𝑁) + 1) →
¬ 𝑝 ≤ 𝑁)) |
| 36 | | nn0re 12537 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℝ) |
| 37 | 11 | zred 12724 |
. . . . . 6
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℝ) |
| 38 | | ltnle 11341 |
. . . . . 6
⊢ ((𝑁 ∈ ℝ ∧ 𝑝 ∈ ℝ) → (𝑁 < 𝑝 ↔ ¬ 𝑝 ≤ 𝑁)) |
| 39 | 36, 37, 38 | syl2an 596 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑝 ∈ ℙ)
→ (𝑁 < 𝑝 ↔ ¬ 𝑝 ≤ 𝑁)) |
| 40 | 35, 39 | sylibrd 259 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝑝 ∈ ℙ)
→ (𝑝 ∥
((!‘𝑁) + 1) →
𝑁 < 𝑝)) |
| 41 | 40 | reximdva 3167 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ (∃𝑝 ∈
ℙ 𝑝 ∥
((!‘𝑁) + 1) →
∃𝑝 ∈ ℙ
𝑁 < 𝑝)) |
| 42 | 10, 41 | mpd 15 |
. 2
⊢ (𝑁 ∈ ℕ0
→ ∃𝑝 ∈
ℙ 𝑁 < 𝑝) |
| 43 | 1, 42 | syl 17 |
1
⊢ (𝑁 ∈ ℕ →
∃𝑝 ∈ ℙ
𝑁 < 𝑝) |