![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psrring | Structured version Visualization version GIF version |
Description: The ring of power series is a ring. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
psrring.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
psrring.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
psrring.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
Ref | Expression |
---|---|
psrring | ⊢ (𝜑 → 𝑆 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2728 | . 2 ⊢ (𝜑 → (Base‘𝑆) = (Base‘𝑆)) | |
2 | eqidd 2728 | . 2 ⊢ (𝜑 → (+g‘𝑆) = (+g‘𝑆)) | |
3 | eqidd 2728 | . 2 ⊢ (𝜑 → (.r‘𝑆) = (.r‘𝑆)) | |
4 | psrring.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
5 | psrring.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
6 | psrring.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
7 | ringgrp 20162 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) |
9 | 4, 5, 8 | psrgrp 21878 | . 2 ⊢ (𝜑 → 𝑆 ∈ Grp) |
10 | eqid 2727 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
11 | eqid 2727 | . . 3 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
12 | 6 | 3ad2ant1 1131 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑅 ∈ Ring) |
13 | simp2 1135 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆)) | |
14 | simp3 1136 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑦 ∈ (Base‘𝑆)) | |
15 | 4, 10, 11, 12, 13, 14 | psrmulcl 21868 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(.r‘𝑆)𝑦) ∈ (Base‘𝑆)) |
16 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝐼 ∈ 𝑉) |
17 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑅 ∈ Ring) |
18 | eqid 2727 | . . 3 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
19 | simpr1 1192 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑥 ∈ (Base‘𝑆)) | |
20 | simpr2 1193 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑦 ∈ (Base‘𝑆)) | |
21 | simpr3 1194 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑧 ∈ (Base‘𝑆)) | |
22 | 4, 16, 17, 18, 11, 10, 19, 20, 21 | psrass1 21886 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(.r‘𝑆)𝑦)(.r‘𝑆)𝑧) = (𝑥(.r‘𝑆)(𝑦(.r‘𝑆)𝑧))) |
23 | eqid 2727 | . . 3 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
24 | 4, 16, 17, 18, 11, 10, 19, 20, 21, 23 | psrdi 21887 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥(.r‘𝑆)(𝑦(+g‘𝑆)𝑧)) = ((𝑥(.r‘𝑆)𝑦)(+g‘𝑆)(𝑥(.r‘𝑆)𝑧))) |
25 | 4, 16, 17, 18, 11, 10, 19, 20, 21, 23 | psrdir 21888 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(+g‘𝑆)𝑦)(.r‘𝑆)𝑧) = ((𝑥(.r‘𝑆)𝑧)(+g‘𝑆)(𝑦(.r‘𝑆)𝑧))) |
26 | eqid 2727 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
27 | eqid 2727 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
28 | eqid 2727 | . . 3 ⊢ (𝑟 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑟 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) = (𝑟 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑟 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) | |
29 | 4, 5, 6, 18, 26, 27, 28, 10 | psr1cl 21883 | . 2 ⊢ (𝜑 → (𝑟 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑟 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) ∈ (Base‘𝑆)) |
30 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆)) → 𝐼 ∈ 𝑉) |
31 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆)) → 𝑅 ∈ Ring) |
32 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆)) | |
33 | 4, 30, 31, 18, 26, 27, 28, 10, 11, 32 | psrlidm 21884 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆)) → ((𝑟 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑟 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)))(.r‘𝑆)𝑥) = 𝑥) |
34 | 4, 30, 31, 18, 26, 27, 28, 10, 11, 32 | psrridm 21885 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆)) → (𝑥(.r‘𝑆)(𝑟 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑟 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)))) = 𝑥) |
35 | 1, 2, 3, 9, 15, 22, 24, 25, 29, 33, 34 | isringd 20209 | 1 ⊢ (𝜑 → 𝑆 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 {crab 3427 ifcif 4524 {csn 4624 ↦ cmpt 5225 × cxp 5670 ◡ccnv 5671 “ cima 5675 ‘cfv 6542 (class class class)co 7414 ↑m cmap 8834 Fincfn 8953 0cc0 11124 ℕcn 12228 ℕ0cn0 12488 Basecbs 17165 +gcplusg 17218 .rcmulr 17219 0gc0g 17406 Grpcgrp 18875 1rcur 20105 Ringcrg 20157 mPwSer cmps 21817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7677 df-ofr 7678 df-om 7863 df-1st 7985 df-2nd 7986 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8716 df-map 8836 df-pm 8837 df-ixp 8906 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-fsupp 9376 df-sup 9451 df-oi 9519 df-card 9948 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-nn 12229 df-2 12291 df-3 12292 df-4 12293 df-5 12294 df-6 12295 df-7 12296 df-8 12297 df-9 12298 df-n0 12489 df-z 12575 df-dec 12694 df-uz 12839 df-fz 13503 df-fzo 13646 df-seq 13985 df-hash 14308 df-struct 17101 df-sets 17118 df-slot 17136 df-ndx 17148 df-base 17166 df-ress 17195 df-plusg 17231 df-mulr 17232 df-sca 17234 df-vsca 17235 df-ip 17236 df-tset 17237 df-ple 17238 df-ds 17240 df-hom 17242 df-cco 17243 df-0g 17408 df-gsum 17409 df-prds 17414 df-pws 17416 df-mre 17551 df-mrc 17552 df-acs 17554 df-mgm 18585 df-sgrp 18664 df-mnd 18680 df-mhm 18725 df-submnd 18726 df-grp 18878 df-minusg 18879 df-mulg 19008 df-ghm 19152 df-cntz 19252 df-cmn 19721 df-abl 19722 df-mgp 20059 df-rng 20077 df-ur 20106 df-ring 20159 df-psr 21822 |
This theorem is referenced by: psr1 21893 psrcrng 21894 psrassa 21895 subrgpsr 21900 mplsubrg 21925 opsrring 22137 |
Copyright terms: Public domain | W3C validator |