MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrring Structured version   Visualization version   GIF version

Theorem psrring 21930
Description: The ring of power series is a ring. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
psrring (𝜑𝑆 ∈ Ring)

Proof of Theorem psrring
Dummy variables 𝑥 𝑓 𝑦 𝑧 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2736 . 2 (𝜑 → (Base‘𝑆) = (Base‘𝑆))
2 eqidd 2736 . 2 (𝜑 → (+g𝑆) = (+g𝑆))
3 eqidd 2736 . 2 (𝜑 → (.r𝑆) = (.r𝑆))
4 psrring.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
5 psrring.i . . 3 (𝜑𝐼𝑉)
6 psrring.r . . . 4 (𝜑𝑅 ∈ Ring)
7 ringgrp 20198 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
86, 7syl 17 . . 3 (𝜑𝑅 ∈ Grp)
94, 5, 8psrgrp 21916 . 2 (𝜑𝑆 ∈ Grp)
10 eqid 2735 . . 3 (Base‘𝑆) = (Base‘𝑆)
11 eqid 2735 . . 3 (.r𝑆) = (.r𝑆)
1263ad2ant1 1133 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑅 ∈ Ring)
13 simp2 1137 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆))
14 simp3 1138 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑦 ∈ (Base‘𝑆))
154, 10, 11, 12, 13, 14psrmulcl 21906 . 2 ((𝜑𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(.r𝑆)𝑦) ∈ (Base‘𝑆))
165adantr 480 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝐼𝑉)
176adantr 480 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑅 ∈ Ring)
18 eqid 2735 . . 3 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
19 simpr1 1195 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑥 ∈ (Base‘𝑆))
20 simpr2 1196 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑦 ∈ (Base‘𝑆))
21 simpr3 1197 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑧 ∈ (Base‘𝑆))
224, 16, 17, 18, 11, 10, 19, 20, 21psrass1 21924 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(.r𝑆)𝑦)(.r𝑆)𝑧) = (𝑥(.r𝑆)(𝑦(.r𝑆)𝑧)))
23 eqid 2735 . . 3 (+g𝑆) = (+g𝑆)
244, 16, 17, 18, 11, 10, 19, 20, 21, 23psrdi 21925 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥(.r𝑆)(𝑦(+g𝑆)𝑧)) = ((𝑥(.r𝑆)𝑦)(+g𝑆)(𝑥(.r𝑆)𝑧)))
254, 16, 17, 18, 11, 10, 19, 20, 21, 23psrdir 21926 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(+g𝑆)𝑦)(.r𝑆)𝑧) = ((𝑥(.r𝑆)𝑧)(+g𝑆)(𝑦(.r𝑆)𝑧)))
26 eqid 2735 . . 3 (0g𝑅) = (0g𝑅)
27 eqid 2735 . . 3 (1r𝑅) = (1r𝑅)
28 eqid 2735 . . 3 (𝑟 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑟 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) = (𝑟 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑟 = (𝐼 × {0}), (1r𝑅), (0g𝑅)))
294, 5, 6, 18, 26, 27, 28, 10psr1cl 21921 . 2 (𝜑 → (𝑟 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑟 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) ∈ (Base‘𝑆))
305adantr 480 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝐼𝑉)
316adantr 480 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝑅 ∈ Ring)
32 simpr 484 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆))
334, 30, 31, 18, 26, 27, 28, 10, 11, 32psrlidm 21922 . 2 ((𝜑𝑥 ∈ (Base‘𝑆)) → ((𝑟 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑟 = (𝐼 × {0}), (1r𝑅), (0g𝑅)))(.r𝑆)𝑥) = 𝑥)
344, 30, 31, 18, 26, 27, 28, 10, 11, 32psrridm 21923 . 2 ((𝜑𝑥 ∈ (Base‘𝑆)) → (𝑥(.r𝑆)(𝑟 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑟 = (𝐼 × {0}), (1r𝑅), (0g𝑅)))) = 𝑥)
351, 2, 3, 9, 15, 22, 24, 25, 29, 33, 34isringd 20251 1 (𝜑𝑆 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  {crab 3415  ifcif 4500  {csn 4601  cmpt 5201   × cxp 5652  ccnv 5653  cima 5657  cfv 6531  (class class class)co 7405  m cmap 8840  Fincfn 8959  0cc0 11129  cn 12240  0cn0 12501  Basecbs 17228  +gcplusg 17271  .rcmulr 17272  0gc0g 17453  Grpcgrp 18916  1rcur 20141  Ringcrg 20193   mPwSer cmps 21864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-mulg 19051  df-ghm 19196  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-psr 21869
This theorem is referenced by:  psr1  21931  psrcrng  21932  psrassa  21933  subrgpsr  21938  psrascl  21939  psrasclcl  21940  mplsubrg  21965  psdascl  22106  opsrring  22180  rhmpsr  42575
  Copyright terms: Public domain W3C validator