Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psrring | Structured version Visualization version GIF version |
Description: The ring of power series is a ring. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
psrring.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
psrring.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
psrring.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
Ref | Expression |
---|---|
psrring | ⊢ (𝜑 → 𝑆 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2739 | . 2 ⊢ (𝜑 → (Base‘𝑆) = (Base‘𝑆)) | |
2 | eqidd 2739 | . 2 ⊢ (𝜑 → (+g‘𝑆) = (+g‘𝑆)) | |
3 | eqidd 2739 | . 2 ⊢ (𝜑 → (.r‘𝑆) = (.r‘𝑆)) | |
4 | psrring.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
5 | psrring.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
6 | psrring.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
7 | ringgrp 19703 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) |
9 | 4, 5, 8 | psrgrp 21077 | . 2 ⊢ (𝜑 → 𝑆 ∈ Grp) |
10 | eqid 2738 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
11 | eqid 2738 | . . 3 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
12 | 6 | 3ad2ant1 1131 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑅 ∈ Ring) |
13 | simp2 1135 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆)) | |
14 | simp3 1136 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑦 ∈ (Base‘𝑆)) | |
15 | 4, 10, 11, 12, 13, 14 | psrmulcl 21067 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(.r‘𝑆)𝑦) ∈ (Base‘𝑆)) |
16 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝐼 ∈ 𝑉) |
17 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑅 ∈ Ring) |
18 | eqid 2738 | . . 3 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
19 | simpr1 1192 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑥 ∈ (Base‘𝑆)) | |
20 | simpr2 1193 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑦 ∈ (Base‘𝑆)) | |
21 | simpr3 1194 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑧 ∈ (Base‘𝑆)) | |
22 | 4, 16, 17, 18, 11, 10, 19, 20, 21 | psrass1 21084 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(.r‘𝑆)𝑦)(.r‘𝑆)𝑧) = (𝑥(.r‘𝑆)(𝑦(.r‘𝑆)𝑧))) |
23 | eqid 2738 | . . 3 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
24 | 4, 16, 17, 18, 11, 10, 19, 20, 21, 23 | psrdi 21085 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥(.r‘𝑆)(𝑦(+g‘𝑆)𝑧)) = ((𝑥(.r‘𝑆)𝑦)(+g‘𝑆)(𝑥(.r‘𝑆)𝑧))) |
25 | 4, 16, 17, 18, 11, 10, 19, 20, 21, 23 | psrdir 21086 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(+g‘𝑆)𝑦)(.r‘𝑆)𝑧) = ((𝑥(.r‘𝑆)𝑧)(+g‘𝑆)(𝑦(.r‘𝑆)𝑧))) |
26 | eqid 2738 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
27 | eqid 2738 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
28 | eqid 2738 | . . 3 ⊢ (𝑟 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑟 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) = (𝑟 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑟 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) | |
29 | 4, 5, 6, 18, 26, 27, 28, 10 | psr1cl 21081 | . 2 ⊢ (𝜑 → (𝑟 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑟 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) ∈ (Base‘𝑆)) |
30 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆)) → 𝐼 ∈ 𝑉) |
31 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆)) → 𝑅 ∈ Ring) |
32 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆)) | |
33 | 4, 30, 31, 18, 26, 27, 28, 10, 11, 32 | psrlidm 21082 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆)) → ((𝑟 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑟 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)))(.r‘𝑆)𝑥) = 𝑥) |
34 | 4, 30, 31, 18, 26, 27, 28, 10, 11, 32 | psrridm 21083 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆)) → (𝑥(.r‘𝑆)(𝑟 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑟 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)))) = 𝑥) |
35 | 1, 2, 3, 9, 15, 22, 24, 25, 29, 33, 34 | isringd 19739 | 1 ⊢ (𝜑 → 𝑆 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 {crab 3067 ifcif 4456 {csn 4558 ↦ cmpt 5153 × cxp 5578 ◡ccnv 5579 “ cima 5583 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 Fincfn 8691 0cc0 10802 ℕcn 11903 ℕ0cn0 12163 Basecbs 16840 +gcplusg 16888 .rcmulr 16889 0gc0g 17067 Grpcgrp 18492 1rcur 19652 Ringcrg 19698 mPwSer cmps 21017 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-ofr 7512 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-tset 16907 df-0g 17069 df-gsum 17070 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-mulg 18616 df-ghm 18747 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-psr 21022 |
This theorem is referenced by: psr1 21091 psrcrng 21092 psrassa 21093 subrgpsr 21098 mplsubrg 21121 opsrring 21326 |
Copyright terms: Public domain | W3C validator |