MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrring Structured version   Visualization version   GIF version

Theorem psrring 21908
Description: The ring of power series is a ring. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
psrring (𝜑𝑆 ∈ Ring)

Proof of Theorem psrring
Dummy variables 𝑥 𝑓 𝑦 𝑧 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2734 . 2 (𝜑 → (Base‘𝑆) = (Base‘𝑆))
2 eqidd 2734 . 2 (𝜑 → (+g𝑆) = (+g𝑆))
3 eqidd 2734 . 2 (𝜑 → (.r𝑆) = (.r𝑆))
4 psrring.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
5 psrring.i . . 3 (𝜑𝐼𝑉)
6 psrring.r . . . 4 (𝜑𝑅 ∈ Ring)
7 ringgrp 20158 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
86, 7syl 17 . . 3 (𝜑𝑅 ∈ Grp)
94, 5, 8psrgrp 21895 . 2 (𝜑𝑆 ∈ Grp)
10 eqid 2733 . . 3 (Base‘𝑆) = (Base‘𝑆)
11 eqid 2733 . . 3 (.r𝑆) = (.r𝑆)
1263ad2ant1 1133 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑅 ∈ Ring)
13 simp2 1137 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆))
14 simp3 1138 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑦 ∈ (Base‘𝑆))
154, 10, 11, 12, 13, 14psrmulcl 21885 . 2 ((𝜑𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(.r𝑆)𝑦) ∈ (Base‘𝑆))
165adantr 480 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝐼𝑉)
176adantr 480 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑅 ∈ Ring)
18 eqid 2733 . . 3 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
19 simpr1 1195 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑥 ∈ (Base‘𝑆))
20 simpr2 1196 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑦 ∈ (Base‘𝑆))
21 simpr3 1197 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑧 ∈ (Base‘𝑆))
224, 16, 17, 18, 11, 10, 19, 20, 21psrass1 21902 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(.r𝑆)𝑦)(.r𝑆)𝑧) = (𝑥(.r𝑆)(𝑦(.r𝑆)𝑧)))
23 eqid 2733 . . 3 (+g𝑆) = (+g𝑆)
244, 16, 17, 18, 11, 10, 19, 20, 21, 23psrdi 21903 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥(.r𝑆)(𝑦(+g𝑆)𝑧)) = ((𝑥(.r𝑆)𝑦)(+g𝑆)(𝑥(.r𝑆)𝑧)))
254, 16, 17, 18, 11, 10, 19, 20, 21, 23psrdir 21904 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(+g𝑆)𝑦)(.r𝑆)𝑧) = ((𝑥(.r𝑆)𝑧)(+g𝑆)(𝑦(.r𝑆)𝑧)))
26 eqid 2733 . . 3 (0g𝑅) = (0g𝑅)
27 eqid 2733 . . 3 (1r𝑅) = (1r𝑅)
28 eqid 2733 . . 3 (𝑟 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑟 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) = (𝑟 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑟 = (𝐼 × {0}), (1r𝑅), (0g𝑅)))
294, 5, 6, 18, 26, 27, 28, 10psr1cl 21899 . 2 (𝜑 → (𝑟 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑟 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) ∈ (Base‘𝑆))
305adantr 480 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝐼𝑉)
316adantr 480 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝑅 ∈ Ring)
32 simpr 484 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆))
334, 30, 31, 18, 26, 27, 28, 10, 11, 32psrlidm 21900 . 2 ((𝜑𝑥 ∈ (Base‘𝑆)) → ((𝑟 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑟 = (𝐼 × {0}), (1r𝑅), (0g𝑅)))(.r𝑆)𝑥) = 𝑥)
344, 30, 31, 18, 26, 27, 28, 10, 11, 32psrridm 21901 . 2 ((𝜑𝑥 ∈ (Base‘𝑆)) → (𝑥(.r𝑆)(𝑟 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑟 = (𝐼 × {0}), (1r𝑅), (0g𝑅)))) = 𝑥)
351, 2, 3, 9, 15, 22, 24, 25, 29, 33, 34isringd 20211 1 (𝜑𝑆 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  {crab 3396  ifcif 4474  {csn 4575  cmpt 5174   × cxp 5617  ccnv 5618  cima 5622  cfv 6486  (class class class)co 7352  m cmap 8756  Fincfn 8875  0cc0 11013  cn 12132  0cn0 12388  Basecbs 17122  +gcplusg 17163  .rcmulr 17164  0gc0g 17345  Grpcgrp 18848  1rcur 20101  Ringcrg 20153   mPwSer cmps 21843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-ofr 7617  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-sup 9333  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-fzo 13557  df-seq 13911  df-hash 14240  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-hom 17187  df-cco 17188  df-0g 17347  df-gsum 17348  df-prds 17353  df-pws 17355  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-submnd 18694  df-grp 18851  df-minusg 18852  df-mulg 18983  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-psr 21848
This theorem is referenced by:  psr1  21909  psrcrng  21910  psrassa  21911  subrgpsr  21916  psrascl  21917  psrasclcl  21918  mplsubrg  21943  psdascl  22084  opsrring  22158  rhmpsr  42670
  Copyright terms: Public domain W3C validator