Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psrring | Structured version Visualization version GIF version |
Description: The ring of power series is a ring. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
psrring.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
psrring.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
psrring.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
Ref | Expression |
---|---|
psrring | ⊢ (𝜑 → 𝑆 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2740 | . 2 ⊢ (𝜑 → (Base‘𝑆) = (Base‘𝑆)) | |
2 | eqidd 2740 | . 2 ⊢ (𝜑 → (+g‘𝑆) = (+g‘𝑆)) | |
3 | eqidd 2740 | . 2 ⊢ (𝜑 → (.r‘𝑆) = (.r‘𝑆)) | |
4 | psrring.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
5 | psrring.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
6 | psrring.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
7 | ringgrp 19769 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) |
9 | 4, 5, 8 | psrgrp 21148 | . 2 ⊢ (𝜑 → 𝑆 ∈ Grp) |
10 | eqid 2739 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
11 | eqid 2739 | . . 3 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
12 | 6 | 3ad2ant1 1131 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑅 ∈ Ring) |
13 | simp2 1135 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆)) | |
14 | simp3 1136 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑦 ∈ (Base‘𝑆)) | |
15 | 4, 10, 11, 12, 13, 14 | psrmulcl 21138 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(.r‘𝑆)𝑦) ∈ (Base‘𝑆)) |
16 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝐼 ∈ 𝑉) |
17 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑅 ∈ Ring) |
18 | eqid 2739 | . . 3 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
19 | simpr1 1192 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑥 ∈ (Base‘𝑆)) | |
20 | simpr2 1193 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑦 ∈ (Base‘𝑆)) | |
21 | simpr3 1194 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑧 ∈ (Base‘𝑆)) | |
22 | 4, 16, 17, 18, 11, 10, 19, 20, 21 | psrass1 21155 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(.r‘𝑆)𝑦)(.r‘𝑆)𝑧) = (𝑥(.r‘𝑆)(𝑦(.r‘𝑆)𝑧))) |
23 | eqid 2739 | . . 3 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
24 | 4, 16, 17, 18, 11, 10, 19, 20, 21, 23 | psrdi 21156 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥(.r‘𝑆)(𝑦(+g‘𝑆)𝑧)) = ((𝑥(.r‘𝑆)𝑦)(+g‘𝑆)(𝑥(.r‘𝑆)𝑧))) |
25 | 4, 16, 17, 18, 11, 10, 19, 20, 21, 23 | psrdir 21157 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(+g‘𝑆)𝑦)(.r‘𝑆)𝑧) = ((𝑥(.r‘𝑆)𝑧)(+g‘𝑆)(𝑦(.r‘𝑆)𝑧))) |
26 | eqid 2739 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
27 | eqid 2739 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
28 | eqid 2739 | . . 3 ⊢ (𝑟 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑟 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) = (𝑟 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑟 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) | |
29 | 4, 5, 6, 18, 26, 27, 28, 10 | psr1cl 21152 | . 2 ⊢ (𝜑 → (𝑟 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑟 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) ∈ (Base‘𝑆)) |
30 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆)) → 𝐼 ∈ 𝑉) |
31 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆)) → 𝑅 ∈ Ring) |
32 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆)) | |
33 | 4, 30, 31, 18, 26, 27, 28, 10, 11, 32 | psrlidm 21153 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆)) → ((𝑟 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑟 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)))(.r‘𝑆)𝑥) = 𝑥) |
34 | 4, 30, 31, 18, 26, 27, 28, 10, 11, 32 | psrridm 21154 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆)) → (𝑥(.r‘𝑆)(𝑟 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑟 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)))) = 𝑥) |
35 | 1, 2, 3, 9, 15, 22, 24, 25, 29, 33, 34 | isringd 19805 | 1 ⊢ (𝜑 → 𝑆 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 {crab 3069 ifcif 4464 {csn 4566 ↦ cmpt 5161 × cxp 5586 ◡ccnv 5587 “ cima 5591 ‘cfv 6430 (class class class)co 7268 ↑m cmap 8589 Fincfn 8707 0cc0 10855 ℕcn 11956 ℕ0cn0 12216 Basecbs 16893 +gcplusg 16943 .rcmulr 16944 0gc0g 17131 Grpcgrp 18558 1rcur 19718 Ringcrg 19764 mPwSer cmps 21088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-iin 4932 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-of 7524 df-ofr 7525 df-om 7701 df-1st 7817 df-2nd 7818 df-supp 7962 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-map 8591 df-pm 8592 df-ixp 8660 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-fsupp 9090 df-oi 9230 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-uz 12565 df-fz 13222 df-fzo 13365 df-seq 13703 df-hash 14026 df-struct 16829 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-mulr 16957 df-sca 16959 df-vsca 16960 df-tset 16962 df-0g 17133 df-gsum 17134 df-mre 17276 df-mrc 17277 df-acs 17279 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-mhm 18411 df-submnd 18412 df-grp 18561 df-minusg 18562 df-mulg 18682 df-ghm 18813 df-cntz 18904 df-cmn 19369 df-abl 19370 df-mgp 19702 df-ur 19719 df-ring 19766 df-psr 21093 |
This theorem is referenced by: psr1 21162 psrcrng 21163 psrassa 21164 subrgpsr 21169 mplsubrg 21192 opsrring 21397 |
Copyright terms: Public domain | W3C validator |