| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psrring | Structured version Visualization version GIF version | ||
| Description: The ring of power series is a ring. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| psrring.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| psrring.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| psrring.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Ref | Expression |
|---|---|
| psrring | ⊢ (𝜑 → 𝑆 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2731 | . 2 ⊢ (𝜑 → (Base‘𝑆) = (Base‘𝑆)) | |
| 2 | eqidd 2731 | . 2 ⊢ (𝜑 → (+g‘𝑆) = (+g‘𝑆)) | |
| 3 | eqidd 2731 | . 2 ⊢ (𝜑 → (.r‘𝑆) = (.r‘𝑆)) | |
| 4 | psrring.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 5 | psrring.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 6 | psrring.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 7 | ringgrp 20154 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 9 | 4, 5, 8 | psrgrp 21872 | . 2 ⊢ (𝜑 → 𝑆 ∈ Grp) |
| 10 | eqid 2730 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 11 | eqid 2730 | . . 3 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
| 12 | 6 | 3ad2ant1 1133 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑅 ∈ Ring) |
| 13 | simp2 1137 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆)) | |
| 14 | simp3 1138 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑦 ∈ (Base‘𝑆)) | |
| 15 | 4, 10, 11, 12, 13, 14 | psrmulcl 21862 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(.r‘𝑆)𝑦) ∈ (Base‘𝑆)) |
| 16 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝐼 ∈ 𝑉) |
| 17 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑅 ∈ Ring) |
| 18 | eqid 2730 | . . 3 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 19 | simpr1 1195 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑥 ∈ (Base‘𝑆)) | |
| 20 | simpr2 1196 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑦 ∈ (Base‘𝑆)) | |
| 21 | simpr3 1197 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑧 ∈ (Base‘𝑆)) | |
| 22 | 4, 16, 17, 18, 11, 10, 19, 20, 21 | psrass1 21880 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(.r‘𝑆)𝑦)(.r‘𝑆)𝑧) = (𝑥(.r‘𝑆)(𝑦(.r‘𝑆)𝑧))) |
| 23 | eqid 2730 | . . 3 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 24 | 4, 16, 17, 18, 11, 10, 19, 20, 21, 23 | psrdi 21881 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥(.r‘𝑆)(𝑦(+g‘𝑆)𝑧)) = ((𝑥(.r‘𝑆)𝑦)(+g‘𝑆)(𝑥(.r‘𝑆)𝑧))) |
| 25 | 4, 16, 17, 18, 11, 10, 19, 20, 21, 23 | psrdir 21882 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(+g‘𝑆)𝑦)(.r‘𝑆)𝑧) = ((𝑥(.r‘𝑆)𝑧)(+g‘𝑆)(𝑦(.r‘𝑆)𝑧))) |
| 26 | eqid 2730 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 27 | eqid 2730 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 28 | eqid 2730 | . . 3 ⊢ (𝑟 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑟 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) = (𝑟 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑟 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) | |
| 29 | 4, 5, 6, 18, 26, 27, 28, 10 | psr1cl 21877 | . 2 ⊢ (𝜑 → (𝑟 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑟 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) ∈ (Base‘𝑆)) |
| 30 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆)) → 𝐼 ∈ 𝑉) |
| 31 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆)) → 𝑅 ∈ Ring) |
| 32 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆)) | |
| 33 | 4, 30, 31, 18, 26, 27, 28, 10, 11, 32 | psrlidm 21878 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆)) → ((𝑟 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑟 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)))(.r‘𝑆)𝑥) = 𝑥) |
| 34 | 4, 30, 31, 18, 26, 27, 28, 10, 11, 32 | psrridm 21879 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆)) → (𝑥(.r‘𝑆)(𝑟 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑟 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)))) = 𝑥) |
| 35 | 1, 2, 3, 9, 15, 22, 24, 25, 29, 33, 34 | isringd 20207 | 1 ⊢ (𝜑 → 𝑆 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3408 ifcif 4491 {csn 4592 ↦ cmpt 5191 × cxp 5639 ◡ccnv 5640 “ cima 5644 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 Fincfn 8921 0cc0 11075 ℕcn 12193 ℕ0cn0 12449 Basecbs 17186 +gcplusg 17227 .rcmulr 17228 0gc0g 17409 Grpcgrp 18872 1rcur 20097 Ringcrg 20149 mPwSer cmps 21820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-ofr 7657 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-fzo 13623 df-seq 13974 df-hash 14303 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-hom 17251 df-cco 17252 df-0g 17411 df-gsum 17412 df-prds 17417 df-pws 17419 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-grp 18875 df-minusg 18876 df-mulg 19007 df-ghm 19152 df-cntz 19256 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-psr 21825 |
| This theorem is referenced by: psr1 21887 psrcrng 21888 psrassa 21889 subrgpsr 21894 psrascl 21895 psrasclcl 21896 mplsubrg 21921 psdascl 22062 opsrring 22136 rhmpsr 42547 |
| Copyright terms: Public domain | W3C validator |