| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > konigsbergumgr | Structured version Visualization version GIF version | ||
| Description: The Königsberg graph 𝐺 is a multigraph. (Contributed by AV, 28-Feb-2021.) (Revised by AV, 9-Mar-2021.) |
| Ref | Expression |
|---|---|
| konigsberg.v | ⊢ 𝑉 = (0...3) |
| konigsberg.e | ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 |
| konigsberg.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
| Ref | Expression |
|---|---|
| konigsbergumgr | ⊢ 𝐺 ∈ UMGraph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | konigsberg.v | . . 3 ⊢ 𝑉 = (0...3) | |
| 2 | konigsberg.e | . . 3 ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 | |
| 3 | konigsberg.g | . . 3 ⊢ 𝐺 = 〈𝑉, 𝐸〉 | |
| 4 | 1, 2, 3 | konigsbergiedgw 30228 | . 2 ⊢ 𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} |
| 5 | opex 5402 | . . . 4 ⊢ 〈𝑉, 𝐸〉 ∈ V | |
| 6 | 3, 5 | eqeltri 2827 | . . 3 ⊢ 𝐺 ∈ V |
| 7 | s7cli 14792 | . . . 4 ⊢ 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 ∈ Word V | |
| 8 | 2, 7 | eqeltri 2827 | . . 3 ⊢ 𝐸 ∈ Word V |
| 9 | 1, 2, 3 | konigsbergvtx 30226 | . . . . 5 ⊢ (Vtx‘𝐺) = (0...3) |
| 10 | 1, 9 | eqtr4i 2757 | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) |
| 11 | 1, 2, 3 | konigsbergiedg 30227 | . . . . 5 ⊢ (iEdg‘𝐺) = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 |
| 12 | 2, 11 | eqtr4i 2757 | . . . 4 ⊢ 𝐸 = (iEdg‘𝐺) |
| 13 | 10, 12 | wrdumgr 29075 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝐸 ∈ Word V) → (𝐺 ∈ UMGraph ↔ 𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})) |
| 14 | 6, 8, 13 | mp2an 692 | . 2 ⊢ (𝐺 ∈ UMGraph ↔ 𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
| 15 | 4, 14 | mpbir 231 | 1 ⊢ 𝐺 ∈ UMGraph |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 𝒫 cpw 4547 {cpr 4575 〈cop 4579 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 2c2 12180 3c3 12181 ...cfz 13407 ♯chash 14237 Word cword 14420 〈“cs7 14753 Vtxcvtx 28974 iEdgciedg 28975 UMGraphcumgr 29059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14504 df-s2 14755 df-s3 14756 df-s4 14757 df-s5 14758 df-s6 14759 df-s7 14760 df-vtx 28976 df-iedg 28977 df-umgr 29061 |
| This theorem is referenced by: konigsberg 30237 |
| Copyright terms: Public domain | W3C validator |