![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > konigsbergumgr | Structured version Visualization version GIF version |
Description: The KΓΆnigsberg graph πΊ is a multigraph. (Contributed by AV, 28-Feb-2021.) (Revised by AV, 9-Mar-2021.) |
Ref | Expression |
---|---|
konigsberg.v | β’ π = (0...3) |
konigsberg.e | β’ πΈ = β¨β{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}ββ© |
konigsberg.g | β’ πΊ = β¨π, πΈβ© |
Ref | Expression |
---|---|
konigsbergumgr | β’ πΊ β UMGraph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | konigsberg.v | . . 3 β’ π = (0...3) | |
2 | konigsberg.e | . . 3 β’ πΈ = β¨β{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}ββ© | |
3 | konigsberg.g | . . 3 β’ πΊ = β¨π, πΈβ© | |
4 | 1, 2, 3 | konigsbergiedgw 30045 | . 2 β’ πΈ β Word {π₯ β π« π β£ (β―βπ₯) = 2} |
5 | opex 5460 | . . . 4 β’ β¨π, πΈβ© β V | |
6 | 3, 5 | eqeltri 2824 | . . 3 β’ πΊ β V |
7 | s7cli 14860 | . . . 4 β’ β¨β{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}ββ© β Word V | |
8 | 2, 7 | eqeltri 2824 | . . 3 β’ πΈ β Word V |
9 | 1, 2, 3 | konigsbergvtx 30043 | . . . . 5 β’ (VtxβπΊ) = (0...3) |
10 | 1, 9 | eqtr4i 2758 | . . . 4 β’ π = (VtxβπΊ) |
11 | 1, 2, 3 | konigsbergiedg 30044 | . . . . 5 β’ (iEdgβπΊ) = β¨β{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}ββ© |
12 | 2, 11 | eqtr4i 2758 | . . . 4 β’ πΈ = (iEdgβπΊ) |
13 | 10, 12 | wrdumgr 28897 | . . 3 β’ ((πΊ β V β§ πΈ β Word V) β (πΊ β UMGraph β πΈ β Word {π₯ β π« π β£ (β―βπ₯) = 2})) |
14 | 6, 8, 13 | mp2an 691 | . 2 β’ (πΊ β UMGraph β πΈ β Word {π₯ β π« π β£ (β―βπ₯) = 2}) |
15 | 4, 14 | mpbir 230 | 1 β’ πΊ β UMGraph |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 = wceq 1534 β wcel 2099 {crab 3427 Vcvv 3469 π« cpw 4598 {cpr 4626 β¨cop 4630 βcfv 6542 (class class class)co 7414 0cc0 11130 1c1 11131 2c2 12289 3c3 12290 ...cfz 13508 β―chash 14313 Word cword 14488 β¨βcs7 14821 Vtxcvtx 28796 iEdgciedg 28797 UMGraphcumgr 28881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-dju 9916 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-2 12297 df-3 12298 df-n0 12495 df-z 12581 df-uz 12845 df-fz 13509 df-fzo 13652 df-hash 14314 df-word 14489 df-concat 14545 df-s1 14570 df-s2 14823 df-s3 14824 df-s4 14825 df-s5 14826 df-s6 14827 df-s7 14828 df-vtx 28798 df-iedg 28799 df-umgr 28883 |
This theorem is referenced by: konigsberg 30054 |
Copyright terms: Public domain | W3C validator |