Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > kur14lem10 | Structured version Visualization version GIF version |
Description: Lemma for kur14 33477. Discharge the set π. (Contributed by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
kur14lem10.j | β’ π½ β Top |
kur14lem10.x | β’ π = βͺ π½ |
kur14lem10.k | β’ πΎ = (clsβπ½) |
kur14lem10.s | β’ π = β© {π₯ β π« π« π β£ (π΄ β π₯ β§ βπ¦ β π₯ {(π β π¦), (πΎβπ¦)} β π₯)} |
kur14lem10.a | β’ π΄ β π |
Ref | Expression |
---|---|
kur14lem10 | β’ (π β Fin β§ (β―βπ) β€ ;14) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kur14lem10.j | . 2 β’ π½ β Top | |
2 | kur14lem10.x | . 2 β’ π = βͺ π½ | |
3 | kur14lem10.k | . 2 β’ πΎ = (clsβπ½) | |
4 | eqid 2736 | . 2 β’ (intβπ½) = (intβπ½) | |
5 | kur14lem10.a | . 2 β’ π΄ β π | |
6 | eqid 2736 | . 2 β’ (π β (πΎβπ΄)) = (π β (πΎβπ΄)) | |
7 | eqid 2736 | . 2 β’ (πΎβ(π β π΄)) = (πΎβ(π β π΄)) | |
8 | eqid 2736 | . 2 β’ ((intβπ½)β(πΎβπ΄)) = ((intβπ½)β(πΎβπ΄)) | |
9 | eqid 2736 | . 2 β’ ((({π΄, (π β π΄), (πΎβπ΄)} βͺ {(π β (πΎβπ΄)), (πΎβ(π β π΄)), ((intβπ½)βπ΄)}) βͺ {(πΎβ(π β (πΎβπ΄))), ((intβπ½)β(πΎβπ΄)), (πΎβ((intβπ½)βπ΄))}) βͺ ({((intβπ½)β(πΎβ(π β π΄))), (πΎβ((intβπ½)β(πΎβπ΄))), ((intβπ½)β(πΎβ(π β (πΎβπ΄))))} βͺ {(πΎβ((intβπ½)β(πΎβ(π β π΄)))), ((intβπ½)β(πΎβ((intβπ½)βπ΄)))})) = ((({π΄, (π β π΄), (πΎβπ΄)} βͺ {(π β (πΎβπ΄)), (πΎβ(π β π΄)), ((intβπ½)βπ΄)}) βͺ {(πΎβ(π β (πΎβπ΄))), ((intβπ½)β(πΎβπ΄)), (πΎβ((intβπ½)βπ΄))}) βͺ ({((intβπ½)β(πΎβ(π β π΄))), (πΎβ((intβπ½)β(πΎβπ΄))), ((intβπ½)β(πΎβ(π β (πΎβπ΄))))} βͺ {(πΎβ((intβπ½)β(πΎβ(π β π΄)))), ((intβπ½)β(πΎβ((intβπ½)βπ΄)))})) | |
10 | kur14lem10.s | . 2 β’ π = β© {π₯ β π« π« π β£ (π΄ β π₯ β§ βπ¦ β π₯ {(π β π¦), (πΎβπ¦)} β π₯)} | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | kur14lem9 33475 | 1 β’ (π β Fin β§ (β―βπ) β€ ;14) |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 396 = wceq 1540 β wcel 2105 βwral 3061 {crab 3403 β cdif 3895 βͺ cun 3896 β wss 3898 π« cpw 4547 {cpr 4575 {ctp 4577 βͺ cuni 4852 β© cint 4894 class class class wbr 5092 βcfv 6479 Fincfn 8804 1c1 10973 β€ cle 11111 4c4 12131 ;cdc 12538 β―chash 14145 Topctop 22148 intcnt 22274 clsccl 22275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-oadd 8371 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-dju 9758 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-7 12142 df-8 12143 df-9 12144 df-n0 12335 df-xnn0 12407 df-z 12421 df-dec 12539 df-uz 12684 df-fz 13341 df-hash 14146 df-top 22149 df-cld 22276 df-ntr 22277 df-cls 22278 |
This theorem is referenced by: kur14 33477 |
Copyright terms: Public domain | W3C validator |