| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > kur14lem10 | Structured version Visualization version GIF version | ||
| Description: Lemma for kur14 35199. Discharge the set 𝑇. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| kur14lem10.j | ⊢ 𝐽 ∈ Top |
| kur14lem10.x | ⊢ 𝑋 = ∪ 𝐽 |
| kur14lem10.k | ⊢ 𝐾 = (cls‘𝐽) |
| kur14lem10.s | ⊢ 𝑆 = ∩ {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥)} |
| kur14lem10.a | ⊢ 𝐴 ⊆ 𝑋 |
| Ref | Expression |
|---|---|
| kur14lem10 | ⊢ (𝑆 ∈ Fin ∧ (♯‘𝑆) ≤ ;14) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kur14lem10.j | . 2 ⊢ 𝐽 ∈ Top | |
| 2 | kur14lem10.x | . 2 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | kur14lem10.k | . 2 ⊢ 𝐾 = (cls‘𝐽) | |
| 4 | eqid 2729 | . 2 ⊢ (int‘𝐽) = (int‘𝐽) | |
| 5 | kur14lem10.a | . 2 ⊢ 𝐴 ⊆ 𝑋 | |
| 6 | eqid 2729 | . 2 ⊢ (𝑋 ∖ (𝐾‘𝐴)) = (𝑋 ∖ (𝐾‘𝐴)) | |
| 7 | eqid 2729 | . 2 ⊢ (𝐾‘(𝑋 ∖ 𝐴)) = (𝐾‘(𝑋 ∖ 𝐴)) | |
| 8 | eqid 2729 | . 2 ⊢ ((int‘𝐽)‘(𝐾‘𝐴)) = ((int‘𝐽)‘(𝐾‘𝐴)) | |
| 9 | eqid 2729 | . 2 ⊢ ((({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {(𝑋 ∖ (𝐾‘𝐴)), (𝐾‘(𝑋 ∖ 𝐴)), ((int‘𝐽)‘𝐴)}) ∪ {(𝐾‘(𝑋 ∖ (𝐾‘𝐴))), ((int‘𝐽)‘(𝐾‘𝐴)), (𝐾‘((int‘𝐽)‘𝐴))}) ∪ ({((int‘𝐽)‘(𝐾‘(𝑋 ∖ 𝐴))), (𝐾‘((int‘𝐽)‘(𝐾‘𝐴))), ((int‘𝐽)‘(𝐾‘(𝑋 ∖ (𝐾‘𝐴))))} ∪ {(𝐾‘((int‘𝐽)‘(𝐾‘(𝑋 ∖ 𝐴)))), ((int‘𝐽)‘(𝐾‘((int‘𝐽)‘𝐴)))})) = ((({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {(𝑋 ∖ (𝐾‘𝐴)), (𝐾‘(𝑋 ∖ 𝐴)), ((int‘𝐽)‘𝐴)}) ∪ {(𝐾‘(𝑋 ∖ (𝐾‘𝐴))), ((int‘𝐽)‘(𝐾‘𝐴)), (𝐾‘((int‘𝐽)‘𝐴))}) ∪ ({((int‘𝐽)‘(𝐾‘(𝑋 ∖ 𝐴))), (𝐾‘((int‘𝐽)‘(𝐾‘𝐴))), ((int‘𝐽)‘(𝐾‘(𝑋 ∖ (𝐾‘𝐴))))} ∪ {(𝐾‘((int‘𝐽)‘(𝐾‘(𝑋 ∖ 𝐴)))), ((int‘𝐽)‘(𝐾‘((int‘𝐽)‘𝐴)))})) | |
| 10 | kur14lem10.s | . 2 ⊢ 𝑆 = ∩ {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥)} | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | kur14lem9 35197 | 1 ⊢ (𝑆 ∈ Fin ∧ (♯‘𝑆) ≤ ;14) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3394 ∖ cdif 3900 ∪ cun 3901 ⊆ wss 3903 𝒫 cpw 4551 {cpr 4579 {ctp 4581 ∪ cuni 4858 ∩ cint 4896 class class class wbr 5092 ‘cfv 6482 Fincfn 8872 1c1 11010 ≤ cle 11150 4c4 12185 ;cdc 12591 ♯chash 14237 Topctop 22778 intcnt 22902 clsccl 22903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-oadd 8392 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-dju 9797 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-xnn0 12458 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-hash 14238 df-top 22779 df-cld 22904 df-ntr 22905 df-cls 22906 |
| This theorem is referenced by: kur14 35199 |
| Copyright terms: Public domain | W3C validator |