| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > kur14lem10 | Structured version Visualization version GIF version | ||
| Description: Lemma for kur14 35221. Discharge the set 𝑇. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| kur14lem10.j | ⊢ 𝐽 ∈ Top |
| kur14lem10.x | ⊢ 𝑋 = ∪ 𝐽 |
| kur14lem10.k | ⊢ 𝐾 = (cls‘𝐽) |
| kur14lem10.s | ⊢ 𝑆 = ∩ {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥)} |
| kur14lem10.a | ⊢ 𝐴 ⊆ 𝑋 |
| Ref | Expression |
|---|---|
| kur14lem10 | ⊢ (𝑆 ∈ Fin ∧ (♯‘𝑆) ≤ ;14) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kur14lem10.j | . 2 ⊢ 𝐽 ∈ Top | |
| 2 | kur14lem10.x | . 2 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | kur14lem10.k | . 2 ⊢ 𝐾 = (cls‘𝐽) | |
| 4 | eqid 2737 | . 2 ⊢ (int‘𝐽) = (int‘𝐽) | |
| 5 | kur14lem10.a | . 2 ⊢ 𝐴 ⊆ 𝑋 | |
| 6 | eqid 2737 | . 2 ⊢ (𝑋 ∖ (𝐾‘𝐴)) = (𝑋 ∖ (𝐾‘𝐴)) | |
| 7 | eqid 2737 | . 2 ⊢ (𝐾‘(𝑋 ∖ 𝐴)) = (𝐾‘(𝑋 ∖ 𝐴)) | |
| 8 | eqid 2737 | . 2 ⊢ ((int‘𝐽)‘(𝐾‘𝐴)) = ((int‘𝐽)‘(𝐾‘𝐴)) | |
| 9 | eqid 2737 | . 2 ⊢ ((({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {(𝑋 ∖ (𝐾‘𝐴)), (𝐾‘(𝑋 ∖ 𝐴)), ((int‘𝐽)‘𝐴)}) ∪ {(𝐾‘(𝑋 ∖ (𝐾‘𝐴))), ((int‘𝐽)‘(𝐾‘𝐴)), (𝐾‘((int‘𝐽)‘𝐴))}) ∪ ({((int‘𝐽)‘(𝐾‘(𝑋 ∖ 𝐴))), (𝐾‘((int‘𝐽)‘(𝐾‘𝐴))), ((int‘𝐽)‘(𝐾‘(𝑋 ∖ (𝐾‘𝐴))))} ∪ {(𝐾‘((int‘𝐽)‘(𝐾‘(𝑋 ∖ 𝐴)))), ((int‘𝐽)‘(𝐾‘((int‘𝐽)‘𝐴)))})) = ((({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {(𝑋 ∖ (𝐾‘𝐴)), (𝐾‘(𝑋 ∖ 𝐴)), ((int‘𝐽)‘𝐴)}) ∪ {(𝐾‘(𝑋 ∖ (𝐾‘𝐴))), ((int‘𝐽)‘(𝐾‘𝐴)), (𝐾‘((int‘𝐽)‘𝐴))}) ∪ ({((int‘𝐽)‘(𝐾‘(𝑋 ∖ 𝐴))), (𝐾‘((int‘𝐽)‘(𝐾‘𝐴))), ((int‘𝐽)‘(𝐾‘(𝑋 ∖ (𝐾‘𝐴))))} ∪ {(𝐾‘((int‘𝐽)‘(𝐾‘(𝑋 ∖ 𝐴)))), ((int‘𝐽)‘(𝐾‘((int‘𝐽)‘𝐴)))})) | |
| 10 | kur14lem10.s | . 2 ⊢ 𝑆 = ∩ {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥)} | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | kur14lem9 35219 | 1 ⊢ (𝑆 ∈ Fin ∧ (♯‘𝑆) ≤ ;14) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 {crab 3436 ∖ cdif 3948 ∪ cun 3949 ⊆ wss 3951 𝒫 cpw 4600 {cpr 4628 {ctp 4630 ∪ cuni 4907 ∩ cint 4946 class class class wbr 5143 ‘cfv 6561 Fincfn 8985 1c1 11156 ≤ cle 11296 4c4 12323 ;cdc 12733 ♯chash 14369 Topctop 22899 intcnt 23025 clsccl 23026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-oadd 8510 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-dju 9941 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-xnn0 12600 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-hash 14370 df-top 22900 df-cld 23027 df-ntr 23028 df-cls 23029 |
| This theorem is referenced by: kur14 35221 |
| Copyright terms: Public domain | W3C validator |