| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > kur14lem10 | Structured version Visualization version GIF version | ||
| Description: Lemma for kur14 35260. Discharge the set 𝑇. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| kur14lem10.j | ⊢ 𝐽 ∈ Top |
| kur14lem10.x | ⊢ 𝑋 = ∪ 𝐽 |
| kur14lem10.k | ⊢ 𝐾 = (cls‘𝐽) |
| kur14lem10.s | ⊢ 𝑆 = ∩ {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥)} |
| kur14lem10.a | ⊢ 𝐴 ⊆ 𝑋 |
| Ref | Expression |
|---|---|
| kur14lem10 | ⊢ (𝑆 ∈ Fin ∧ (♯‘𝑆) ≤ ;14) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kur14lem10.j | . 2 ⊢ 𝐽 ∈ Top | |
| 2 | kur14lem10.x | . 2 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | kur14lem10.k | . 2 ⊢ 𝐾 = (cls‘𝐽) | |
| 4 | eqid 2731 | . 2 ⊢ (int‘𝐽) = (int‘𝐽) | |
| 5 | kur14lem10.a | . 2 ⊢ 𝐴 ⊆ 𝑋 | |
| 6 | eqid 2731 | . 2 ⊢ (𝑋 ∖ (𝐾‘𝐴)) = (𝑋 ∖ (𝐾‘𝐴)) | |
| 7 | eqid 2731 | . 2 ⊢ (𝐾‘(𝑋 ∖ 𝐴)) = (𝐾‘(𝑋 ∖ 𝐴)) | |
| 8 | eqid 2731 | . 2 ⊢ ((int‘𝐽)‘(𝐾‘𝐴)) = ((int‘𝐽)‘(𝐾‘𝐴)) | |
| 9 | eqid 2731 | . 2 ⊢ ((({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {(𝑋 ∖ (𝐾‘𝐴)), (𝐾‘(𝑋 ∖ 𝐴)), ((int‘𝐽)‘𝐴)}) ∪ {(𝐾‘(𝑋 ∖ (𝐾‘𝐴))), ((int‘𝐽)‘(𝐾‘𝐴)), (𝐾‘((int‘𝐽)‘𝐴))}) ∪ ({((int‘𝐽)‘(𝐾‘(𝑋 ∖ 𝐴))), (𝐾‘((int‘𝐽)‘(𝐾‘𝐴))), ((int‘𝐽)‘(𝐾‘(𝑋 ∖ (𝐾‘𝐴))))} ∪ {(𝐾‘((int‘𝐽)‘(𝐾‘(𝑋 ∖ 𝐴)))), ((int‘𝐽)‘(𝐾‘((int‘𝐽)‘𝐴)))})) = ((({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {(𝑋 ∖ (𝐾‘𝐴)), (𝐾‘(𝑋 ∖ 𝐴)), ((int‘𝐽)‘𝐴)}) ∪ {(𝐾‘(𝑋 ∖ (𝐾‘𝐴))), ((int‘𝐽)‘(𝐾‘𝐴)), (𝐾‘((int‘𝐽)‘𝐴))}) ∪ ({((int‘𝐽)‘(𝐾‘(𝑋 ∖ 𝐴))), (𝐾‘((int‘𝐽)‘(𝐾‘𝐴))), ((int‘𝐽)‘(𝐾‘(𝑋 ∖ (𝐾‘𝐴))))} ∪ {(𝐾‘((int‘𝐽)‘(𝐾‘(𝑋 ∖ 𝐴)))), ((int‘𝐽)‘(𝐾‘((int‘𝐽)‘𝐴)))})) | |
| 10 | kur14lem10.s | . 2 ⊢ 𝑆 = ∩ {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥)} | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | kur14lem9 35258 | 1 ⊢ (𝑆 ∈ Fin ∧ (♯‘𝑆) ≤ ;14) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 ∖ cdif 3894 ∪ cun 3895 ⊆ wss 3897 𝒫 cpw 4547 {cpr 4575 {ctp 4577 ∪ cuni 4856 ∩ cint 4895 class class class wbr 5089 ‘cfv 6481 Fincfn 8869 1c1 11007 ≤ cle 11147 4c4 12182 ;cdc 12588 ♯chash 14237 Topctop 22808 intcnt 22932 clsccl 22933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-xnn0 12455 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-hash 14238 df-top 22809 df-cld 22934 df-ntr 22935 df-cls 22936 |
| This theorem is referenced by: kur14 35260 |
| Copyright terms: Public domain | W3C validator |