| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsssssubg | Structured version Visualization version GIF version | ||
| Description: All subspaces are subgroups. (Contributed by Mario Carneiro, 19-Apr-2016.) |
| Ref | Expression |
|---|---|
| lsssubg.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lsssssubg | ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsssubg.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 2 | 1 | lsssubg 20870 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ (SubGrp‘𝑊)) |
| 3 | 2 | ex 412 | . 2 ⊢ (𝑊 ∈ LMod → (𝑥 ∈ 𝑆 → 𝑥 ∈ (SubGrp‘𝑊))) |
| 4 | 3 | ssrdv 3955 | 1 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 ‘cfv 6514 SubGrpcsubg 19059 LModclmod 20773 LSubSpclss 20844 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-mgp 20057 df-ur 20098 df-ring 20151 df-lmod 20775 df-lss 20845 |
| This theorem is referenced by: lsmsp 21000 lspprabs 21009 pj1lmhm 21014 pj1lmhm2 21015 lspindpi 21049 lvecindp 21055 lsmcv 21058 pjdm2 21627 pjf2 21630 pjfo 21631 ocvpj 21633 pjthlem2 25345 lshpnel 38983 lshpnelb 38984 lsmsat 39008 lrelat 39014 lsmcv2 39029 lcvexchlem1 39034 lcvexchlem2 39035 lcvexchlem3 39036 lcvexchlem4 39037 lcvexchlem5 39038 lcv1 39041 lcv2 39042 lsatexch 39043 lsatcv0eq 39047 lsatcvatlem 39049 lsatcvat 39050 lsatcvat3 39052 l1cvat 39055 lkrlsp 39102 lshpsmreu 39109 lshpkrlem5 39114 dia2dimlem5 41069 dia2dimlem9 41073 dvhopellsm 41118 diblsmopel 41172 cdlemn5pre 41201 cdlemn11c 41210 dihjustlem 41217 dihord1 41219 dihord2a 41220 dihord2b 41221 dihord11c 41225 dihord6apre 41257 dihord5b 41260 dihord5apre 41263 dihjatc3 41314 dihmeetlem9N 41316 dihjatcclem1 41419 dihjatcclem2 41420 dihjat 41424 dvh3dim3N 41450 dochexmidlem2 41462 dochexmidlem6 41466 dochexmidlem7 41467 lclkrlem2b 41509 lclkrlem2f 41513 lclkrlem2v 41529 lclkrslem2 41539 lcfrlem23 41566 lcfrlem25 41568 lcfrlem35 41578 mapdlsm 41665 mapdpglem3 41676 mapdindp0 41720 lspindp5 41771 hdmaprnlem3eN 41859 hdmapglem7a 41928 |
| Copyright terms: Public domain | W3C validator |