![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsssssubg | Structured version Visualization version GIF version |
Description: All subspaces are subgroups. (Contributed by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
lsssubg.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lsssssubg | ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsssubg.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
2 | 1 | lsssubg 20978 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ (SubGrp‘𝑊)) |
3 | 2 | ex 412 | . 2 ⊢ (𝑊 ∈ LMod → (𝑥 ∈ 𝑆 → 𝑥 ∈ (SubGrp‘𝑊))) |
4 | 3 | ssrdv 4014 | 1 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ‘cfv 6573 SubGrpcsubg 19160 LModclmod 20880 LSubSpclss 20952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-mgp 20162 df-ur 20209 df-ring 20262 df-lmod 20882 df-lss 20953 |
This theorem is referenced by: lsmsp 21108 lspprabs 21117 pj1lmhm 21122 pj1lmhm2 21123 lspindpi 21157 lvecindp 21163 lsmcv 21166 pjdm2 21754 pjf2 21757 pjfo 21758 ocvpj 21760 pjthlem2 25491 lshpnel 38939 lshpnelb 38940 lsmsat 38964 lrelat 38970 lsmcv2 38985 lcvexchlem1 38990 lcvexchlem2 38991 lcvexchlem3 38992 lcvexchlem4 38993 lcvexchlem5 38994 lcv1 38997 lcv2 38998 lsatexch 38999 lsatcv0eq 39003 lsatcvatlem 39005 lsatcvat 39006 lsatcvat3 39008 l1cvat 39011 lkrlsp 39058 lshpsmreu 39065 lshpkrlem5 39070 dia2dimlem5 41025 dia2dimlem9 41029 dvhopellsm 41074 diblsmopel 41128 cdlemn5pre 41157 cdlemn11c 41166 dihjustlem 41173 dihord1 41175 dihord2a 41176 dihord2b 41177 dihord11c 41181 dihord6apre 41213 dihord5b 41216 dihord5apre 41219 dihjatc3 41270 dihmeetlem9N 41272 dihjatcclem1 41375 dihjatcclem2 41376 dihjat 41380 dvh3dim3N 41406 dochexmidlem2 41418 dochexmidlem6 41422 dochexmidlem7 41423 lclkrlem2b 41465 lclkrlem2f 41469 lclkrlem2v 41485 lclkrslem2 41495 lcfrlem23 41522 lcfrlem25 41524 lcfrlem35 41534 mapdlsm 41621 mapdpglem3 41632 mapdindp0 41676 lspindp5 41727 hdmaprnlem3eN 41815 hdmapglem7a 41884 |
Copyright terms: Public domain | W3C validator |