| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsssssubg | Structured version Visualization version GIF version | ||
| Description: All subspaces are subgroups. (Contributed by Mario Carneiro, 19-Apr-2016.) |
| Ref | Expression |
|---|---|
| lsssubg.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lsssssubg | ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsssubg.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 2 | 1 | lsssubg 20839 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ (SubGrp‘𝑊)) |
| 3 | 2 | ex 412 | . 2 ⊢ (𝑊 ∈ LMod → (𝑥 ∈ 𝑆 → 𝑥 ∈ (SubGrp‘𝑊))) |
| 4 | 3 | ssrdv 3949 | 1 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 ‘cfv 6499 SubGrpcsubg 19028 LModclmod 20742 LSubSpclss 20813 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-mgp 20026 df-ur 20067 df-ring 20120 df-lmod 20744 df-lss 20814 |
| This theorem is referenced by: lsmsp 20969 lspprabs 20978 pj1lmhm 20983 pj1lmhm2 20984 lspindpi 21018 lvecindp 21024 lsmcv 21027 pjdm2 21596 pjf2 21599 pjfo 21600 ocvpj 21602 pjthlem2 25314 lshpnel 38949 lshpnelb 38950 lsmsat 38974 lrelat 38980 lsmcv2 38995 lcvexchlem1 39000 lcvexchlem2 39001 lcvexchlem3 39002 lcvexchlem4 39003 lcvexchlem5 39004 lcv1 39007 lcv2 39008 lsatexch 39009 lsatcv0eq 39013 lsatcvatlem 39015 lsatcvat 39016 lsatcvat3 39018 l1cvat 39021 lkrlsp 39068 lshpsmreu 39075 lshpkrlem5 39080 dia2dimlem5 41035 dia2dimlem9 41039 dvhopellsm 41084 diblsmopel 41138 cdlemn5pre 41167 cdlemn11c 41176 dihjustlem 41183 dihord1 41185 dihord2a 41186 dihord2b 41187 dihord11c 41191 dihord6apre 41223 dihord5b 41226 dihord5apre 41229 dihjatc3 41280 dihmeetlem9N 41282 dihjatcclem1 41385 dihjatcclem2 41386 dihjat 41390 dvh3dim3N 41416 dochexmidlem2 41428 dochexmidlem6 41432 dochexmidlem7 41433 lclkrlem2b 41475 lclkrlem2f 41479 lclkrlem2v 41495 lclkrslem2 41505 lcfrlem23 41532 lcfrlem25 41534 lcfrlem35 41544 mapdlsm 41631 mapdpglem3 41642 mapdindp0 41686 lspindp5 41737 hdmaprnlem3eN 41825 hdmapglem7a 41894 |
| Copyright terms: Public domain | W3C validator |