MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsssssubg Structured version   Visualization version   GIF version

Theorem lsssssubg 20956
Description: All subspaces are subgroups. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypothesis
Ref Expression
lsssubg.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lsssssubg (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))

Proof of Theorem lsssssubg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lsssubg.s . . . 4 𝑆 = (LSubSp‘𝑊)
21lsssubg 20955 . . 3 ((𝑊 ∈ LMod ∧ 𝑥𝑆) → 𝑥 ∈ (SubGrp‘𝑊))
32ex 412 . 2 (𝑊 ∈ LMod → (𝑥𝑆𝑥 ∈ (SubGrp‘𝑊)))
43ssrdv 3989 1 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wss 3951  cfv 6561  SubGrpcsubg 19138  LModclmod 20858  LSubSpclss 20929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-mgp 20138  df-ur 20179  df-ring 20232  df-lmod 20860  df-lss 20930
This theorem is referenced by:  lsmsp  21085  lspprabs  21094  pj1lmhm  21099  pj1lmhm2  21100  lspindpi  21134  lvecindp  21140  lsmcv  21143  pjdm2  21731  pjf2  21734  pjfo  21735  ocvpj  21737  pjthlem2  25472  lshpnel  38984  lshpnelb  38985  lsmsat  39009  lrelat  39015  lsmcv2  39030  lcvexchlem1  39035  lcvexchlem2  39036  lcvexchlem3  39037  lcvexchlem4  39038  lcvexchlem5  39039  lcv1  39042  lcv2  39043  lsatexch  39044  lsatcv0eq  39048  lsatcvatlem  39050  lsatcvat  39051  lsatcvat3  39053  l1cvat  39056  lkrlsp  39103  lshpsmreu  39110  lshpkrlem5  39115  dia2dimlem5  41070  dia2dimlem9  41074  dvhopellsm  41119  diblsmopel  41173  cdlemn5pre  41202  cdlemn11c  41211  dihjustlem  41218  dihord1  41220  dihord2a  41221  dihord2b  41222  dihord11c  41226  dihord6apre  41258  dihord5b  41261  dihord5apre  41264  dihjatc3  41315  dihmeetlem9N  41317  dihjatcclem1  41420  dihjatcclem2  41421  dihjat  41425  dvh3dim3N  41451  dochexmidlem2  41463  dochexmidlem6  41467  dochexmidlem7  41468  lclkrlem2b  41510  lclkrlem2f  41514  lclkrlem2v  41530  lclkrslem2  41540  lcfrlem23  41567  lcfrlem25  41569  lcfrlem35  41579  mapdlsm  41666  mapdpglem3  41677  mapdindp0  41721  lspindp5  41772  hdmaprnlem3eN  41860  hdmapglem7a  41929
  Copyright terms: Public domain W3C validator