Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lsssssubg | Structured version Visualization version GIF version |
Description: All subspaces are subgroups. (Contributed by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
lsssubg.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lsssssubg | ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsssubg.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
2 | 1 | lsssubg 20228 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ (SubGrp‘𝑊)) |
3 | 2 | ex 413 | . 2 ⊢ (𝑊 ∈ LMod → (𝑥 ∈ 𝑆 → 𝑥 ∈ (SubGrp‘𝑊))) |
4 | 3 | ssrdv 3928 | 1 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ⊆ wss 3888 ‘cfv 6437 SubGrpcsubg 18758 LModclmod 20132 LSubSpclss 20202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rmo 3072 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-om 7722 df-1st 7840 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-nn 11983 df-2 12045 df-sets 16874 df-slot 16892 df-ndx 16904 df-base 16922 df-ress 16951 df-plusg 16984 df-0g 17161 df-mgm 18335 df-sgrp 18384 df-mnd 18395 df-grp 18589 df-minusg 18590 df-sbg 18591 df-subg 18761 df-mgp 19730 df-ur 19747 df-ring 19794 df-lmod 20134 df-lss 20203 |
This theorem is referenced by: lsmsp 20357 lspprabs 20366 pj1lmhm 20371 pj1lmhm2 20372 lspindpi 20403 lvecindp 20409 lsmcv 20412 pjdm2 20927 pjf2 20930 pjfo 20931 ocvpj 20933 pjthlem2 24611 lshpnel 37004 lshpnelb 37005 lsmsat 37029 lrelat 37035 lsmcv2 37050 lcvexchlem1 37055 lcvexchlem2 37056 lcvexchlem3 37057 lcvexchlem4 37058 lcvexchlem5 37059 lcv1 37062 lcv2 37063 lsatexch 37064 lsatcv0eq 37068 lsatcvatlem 37070 lsatcvat 37071 lsatcvat3 37073 l1cvat 37076 lkrlsp 37123 lshpsmreu 37130 lshpkrlem5 37135 dia2dimlem5 39089 dia2dimlem9 39093 dvhopellsm 39138 diblsmopel 39192 cdlemn5pre 39221 cdlemn11c 39230 dihjustlem 39237 dihord1 39239 dihord2a 39240 dihord2b 39241 dihord11c 39245 dihord6apre 39277 dihord5b 39280 dihord5apre 39283 dihjatc3 39334 dihmeetlem9N 39336 dihjatcclem1 39439 dihjatcclem2 39440 dihjat 39444 dvh3dim3N 39470 dochexmidlem2 39482 dochexmidlem6 39486 dochexmidlem7 39487 lclkrlem2b 39529 lclkrlem2f 39533 lclkrlem2v 39549 lclkrslem2 39559 lcfrlem23 39586 lcfrlem25 39588 lcfrlem35 39598 mapdlsm 39685 mapdpglem3 39696 mapdindp0 39740 lspindp5 39791 hdmaprnlem3eN 39879 hdmapglem7a 39948 |
Copyright terms: Public domain | W3C validator |