| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsssssubg | Structured version Visualization version GIF version | ||
| Description: All subspaces are subgroups. (Contributed by Mario Carneiro, 19-Apr-2016.) |
| Ref | Expression |
|---|---|
| lsssubg.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lsssssubg | ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsssubg.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 2 | 1 | lsssubg 20891 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ (SubGrp‘𝑊)) |
| 3 | 2 | ex 412 | . 2 ⊢ (𝑊 ∈ LMod → (𝑥 ∈ 𝑆 → 𝑥 ∈ (SubGrp‘𝑊))) |
| 4 | 3 | ssrdv 3940 | 1 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 ‘cfv 6481 SubGrpcsubg 19033 LModclmod 20794 LSubSpclss 20865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-sbg 18851 df-subg 19036 df-mgp 20060 df-ur 20101 df-ring 20154 df-lmod 20796 df-lss 20866 |
| This theorem is referenced by: lsmsp 21021 lspprabs 21030 pj1lmhm 21035 pj1lmhm2 21036 lspindpi 21070 lvecindp 21076 lsmcv 21079 pjdm2 21649 pjf2 21652 pjfo 21653 ocvpj 21655 pjthlem2 25366 lshpnel 39028 lshpnelb 39029 lsmsat 39053 lrelat 39059 lsmcv2 39074 lcvexchlem1 39079 lcvexchlem2 39080 lcvexchlem3 39081 lcvexchlem4 39082 lcvexchlem5 39083 lcv1 39086 lcv2 39087 lsatexch 39088 lsatcv0eq 39092 lsatcvatlem 39094 lsatcvat 39095 lsatcvat3 39097 l1cvat 39100 lkrlsp 39147 lshpsmreu 39154 lshpkrlem5 39159 dia2dimlem5 41113 dia2dimlem9 41117 dvhopellsm 41162 diblsmopel 41216 cdlemn5pre 41245 cdlemn11c 41254 dihjustlem 41261 dihord1 41263 dihord2a 41264 dihord2b 41265 dihord11c 41269 dihord6apre 41301 dihord5b 41304 dihord5apre 41307 dihjatc3 41358 dihmeetlem9N 41360 dihjatcclem1 41463 dihjatcclem2 41464 dihjat 41468 dvh3dim3N 41494 dochexmidlem2 41506 dochexmidlem6 41510 dochexmidlem7 41511 lclkrlem2b 41553 lclkrlem2f 41557 lclkrlem2v 41573 lclkrslem2 41583 lcfrlem23 41610 lcfrlem25 41612 lcfrlem35 41622 mapdlsm 41709 mapdpglem3 41720 mapdindp0 41764 lspindp5 41815 hdmaprnlem3eN 41903 hdmapglem7a 41972 |
| Copyright terms: Public domain | W3C validator |