| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsssssubg | Structured version Visualization version GIF version | ||
| Description: All subspaces are subgroups. (Contributed by Mario Carneiro, 19-Apr-2016.) |
| Ref | Expression |
|---|---|
| lsssubg.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lsssssubg | ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsssubg.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 2 | 1 | lsssubg 20899 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ (SubGrp‘𝑊)) |
| 3 | 2 | ex 412 | . 2 ⊢ (𝑊 ∈ LMod → (𝑥 ∈ 𝑆 → 𝑥 ∈ (SubGrp‘𝑊))) |
| 4 | 3 | ssrdv 3936 | 1 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 ‘cfv 6489 SubGrpcsubg 19041 LModclmod 20802 LSubSpclss 20873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-0g 17352 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-grp 18857 df-minusg 18858 df-sbg 18859 df-subg 19044 df-mgp 20067 df-ur 20108 df-ring 20161 df-lmod 20804 df-lss 20874 |
| This theorem is referenced by: lsmsp 21029 lspprabs 21038 pj1lmhm 21043 pj1lmhm2 21044 lspindpi 21078 lvecindp 21084 lsmcv 21087 pjdm2 21657 pjf2 21660 pjfo 21661 ocvpj 21663 pjthlem2 25385 lshpnel 39155 lshpnelb 39156 lsmsat 39180 lrelat 39186 lsmcv2 39201 lcvexchlem1 39206 lcvexchlem2 39207 lcvexchlem3 39208 lcvexchlem4 39209 lcvexchlem5 39210 lcv1 39213 lcv2 39214 lsatexch 39215 lsatcv0eq 39219 lsatcvatlem 39221 lsatcvat 39222 lsatcvat3 39224 l1cvat 39227 lkrlsp 39274 lshpsmreu 39281 lshpkrlem5 39286 dia2dimlem5 41240 dia2dimlem9 41244 dvhopellsm 41289 diblsmopel 41343 cdlemn5pre 41372 cdlemn11c 41381 dihjustlem 41388 dihord1 41390 dihord2a 41391 dihord2b 41392 dihord11c 41396 dihord6apre 41428 dihord5b 41431 dihord5apre 41434 dihjatc3 41485 dihmeetlem9N 41487 dihjatcclem1 41590 dihjatcclem2 41591 dihjat 41595 dvh3dim3N 41621 dochexmidlem2 41633 dochexmidlem6 41637 dochexmidlem7 41638 lclkrlem2b 41680 lclkrlem2f 41684 lclkrlem2v 41700 lclkrslem2 41710 lcfrlem23 41737 lcfrlem25 41739 lcfrlem35 41749 mapdlsm 41836 mapdpglem3 41847 mapdindp0 41891 lspindp5 41942 hdmaprnlem3eN 42030 hdmapglem7a 42099 |
| Copyright terms: Public domain | W3C validator |