Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvexchlem2 Structured version   Visualization version   GIF version

Theorem lcvexchlem2 35645
Description: Lemma for lcvexch 35649. (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lcvexch.s 𝑆 = (LSubSp‘𝑊)
lcvexch.p = (LSSum‘𝑊)
lcvexch.c 𝐶 = ( ⋖L𝑊)
lcvexch.w (𝜑𝑊 ∈ LMod)
lcvexch.t (𝜑𝑇𝑆)
lcvexch.u (𝜑𝑈𝑆)
lcvexch.r (𝜑𝑅𝑆)
lcvexch.a (𝜑 → (𝑇𝑈) ⊆ 𝑅)
lcvexch.b (𝜑𝑅𝑈)
Assertion
Ref Expression
lcvexchlem2 (𝜑 → ((𝑅 𝑇) ∩ 𝑈) = 𝑅)

Proof of Theorem lcvexchlem2
StepHypRef Expression
1 lcvexch.w . . . . 5 (𝜑𝑊 ∈ LMod)
2 lcvexch.s . . . . . 6 𝑆 = (LSubSp‘𝑊)
32lsssssubg 19464 . . . . 5 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
41, 3syl 17 . . . 4 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
5 lcvexch.r . . . 4 (𝜑𝑅𝑆)
64, 5sseldd 3853 . . 3 (𝜑𝑅 ∈ (SubGrp‘𝑊))
7 lcvexch.t . . . 4 (𝜑𝑇𝑆)
84, 7sseldd 3853 . . 3 (𝜑𝑇 ∈ (SubGrp‘𝑊))
9 lcvexch.u . . . 4 (𝜑𝑈𝑆)
104, 9sseldd 3853 . . 3 (𝜑𝑈 ∈ (SubGrp‘𝑊))
11 lcvexch.b . . 3 (𝜑𝑅𝑈)
12 lcvexch.p . . . 4 = (LSSum‘𝑊)
1312lsmmod 18571 . . 3 (((𝑅 ∈ (SubGrp‘𝑊) ∧ 𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) ∧ 𝑅𝑈) → (𝑅 (𝑇𝑈)) = ((𝑅 𝑇) ∩ 𝑈))
146, 8, 10, 11, 13syl31anc 1353 . 2 (𝜑 → (𝑅 (𝑇𝑈)) = ((𝑅 𝑇) ∩ 𝑈))
152lssincl 19471 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇𝑈) ∈ 𝑆)
161, 7, 9, 15syl3anc 1351 . . . 4 (𝜑 → (𝑇𝑈) ∈ 𝑆)
174, 16sseldd 3853 . . 3 (𝜑 → (𝑇𝑈) ∈ (SubGrp‘𝑊))
18 lcvexch.a . . 3 (𝜑 → (𝑇𝑈) ⊆ 𝑅)
1912lsmss2 18564 . . 3 ((𝑅 ∈ (SubGrp‘𝑊) ∧ (𝑇𝑈) ∈ (SubGrp‘𝑊) ∧ (𝑇𝑈) ⊆ 𝑅) → (𝑅 (𝑇𝑈)) = 𝑅)
206, 17, 18, 19syl3anc 1351 . 2 (𝜑 → (𝑅 (𝑇𝑈)) = 𝑅)
2114, 20eqtr3d 2810 1 (𝜑 → ((𝑅 𝑇) ∩ 𝑈) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1507  wcel 2050  cin 3822  wss 3823  cfv 6185  (class class class)co 6974  SubGrpcsubg 18069  LSSumclsm 18532  LModclmod 19368  LSubSpclss 19437  L clcv 35628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-int 4746  df-iun 4790  df-iin 4791  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-1st 7499  df-2nd 7500  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-1o 7903  df-oadd 7907  df-er 8087  df-en 8305  df-dom 8306  df-sdom 8307  df-fin 8308  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-nn 11438  df-2 11501  df-ndx 16340  df-slot 16341  df-base 16343  df-sets 16344  df-ress 16345  df-plusg 16432  df-0g 16569  df-mre 16727  df-mrc 16728  df-acs 16730  df-mgm 17722  df-sgrp 17764  df-mnd 17775  df-submnd 17816  df-grp 17906  df-minusg 17907  df-sbg 17908  df-subg 18072  df-lsm 18534  df-mgp 18975  df-ur 18987  df-ring 19034  df-lmod 19370  df-lss 19438
This theorem is referenced by:  lcvexchlem4  35647
  Copyright terms: Public domain W3C validator