![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupgt | Structured version Visualization version GIF version |
Description: Given a sequence of real numbers, there exists an upper part of the sequence that's appxoximated from below by the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
limsupgt.k | β’ β²ππΉ |
limsupgt.m | β’ (π β π β β€) |
limsupgt.z | β’ π = (β€β₯βπ) |
limsupgt.f | β’ (π β πΉ:πβΆβ) |
limsupgt.r | β’ (π β (lim supβπΉ) β β) |
limsupgt.x | β’ (π β π β β+) |
Ref | Expression |
---|---|
limsupgt | β’ (π β βπ β π βπ β (β€β₯βπ)((πΉβπ) β π) < (lim supβπΉ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupgt.m | . . 3 β’ (π β π β β€) | |
2 | limsupgt.z | . . 3 β’ π = (β€β₯βπ) | |
3 | limsupgt.f | . . 3 β’ (π β πΉ:πβΆβ) | |
4 | limsupgt.r | . . 3 β’ (π β (lim supβπΉ) β β) | |
5 | limsupgt.x | . . 3 β’ (π β π β β+) | |
6 | 1, 2, 3, 4, 5 | limsupgtlem 44483 | . 2 β’ (π β βπ β π βπ β (β€β₯βπ)((πΉβπ) β π) < (lim supβπΉ)) |
7 | limsupgt.k | . . . . . . . . 9 β’ β²ππΉ | |
8 | nfcv 2903 | . . . . . . . . 9 β’ β²ππ | |
9 | 7, 8 | nffv 6901 | . . . . . . . 8 β’ β²π(πΉβπ) |
10 | nfcv 2903 | . . . . . . . 8 β’ β²π β | |
11 | nfcv 2903 | . . . . . . . 8 β’ β²ππ | |
12 | 9, 10, 11 | nfov 7438 | . . . . . . 7 β’ β²π((πΉβπ) β π) |
13 | nfcv 2903 | . . . . . . 7 β’ β²π < | |
14 | nfcv 2903 | . . . . . . . 8 β’ β²πlim sup | |
15 | 14, 7 | nffv 6901 | . . . . . . 7 β’ β²π(lim supβπΉ) |
16 | 12, 13, 15 | nfbr 5195 | . . . . . 6 β’ β²π((πΉβπ) β π) < (lim supβπΉ) |
17 | nfv 1917 | . . . . . 6 β’ β²π((πΉβπ) β π) < (lim supβπΉ) | |
18 | fveq2 6891 | . . . . . . . 8 β’ (π = π β (πΉβπ) = (πΉβπ)) | |
19 | 18 | oveq1d 7423 | . . . . . . 7 β’ (π = π β ((πΉβπ) β π) = ((πΉβπ) β π)) |
20 | 19 | breq1d 5158 | . . . . . 6 β’ (π = π β (((πΉβπ) β π) < (lim supβπΉ) β ((πΉβπ) β π) < (lim supβπΉ))) |
21 | 16, 17, 20 | cbvralw 3303 | . . . . 5 β’ (βπ β (β€β₯βπ)((πΉβπ) β π) < (lim supβπΉ) β βπ β (β€β₯βπ)((πΉβπ) β π) < (lim supβπΉ)) |
22 | 21 | a1i 11 | . . . 4 β’ (π = π β (βπ β (β€β₯βπ)((πΉβπ) β π) < (lim supβπΉ) β βπ β (β€β₯βπ)((πΉβπ) β π) < (lim supβπΉ))) |
23 | fveq2 6891 | . . . . 5 β’ (π = π β (β€β₯βπ) = (β€β₯βπ)) | |
24 | 23 | raleqdv 3325 | . . . 4 β’ (π = π β (βπ β (β€β₯βπ)((πΉβπ) β π) < (lim supβπΉ) β βπ β (β€β₯βπ)((πΉβπ) β π) < (lim supβπΉ))) |
25 | 22, 24 | bitrd 278 | . . 3 β’ (π = π β (βπ β (β€β₯βπ)((πΉβπ) β π) < (lim supβπΉ) β βπ β (β€β₯βπ)((πΉβπ) β π) < (lim supβπΉ))) |
26 | 25 | cbvrexvw 3235 | . 2 β’ (βπ β π βπ β (β€β₯βπ)((πΉβπ) β π) < (lim supβπΉ) β βπ β π βπ β (β€β₯βπ)((πΉβπ) β π) < (lim supβπΉ)) |
27 | 6, 26 | sylib 217 | 1 β’ (π β βπ β π βπ β (β€β₯βπ)((πΉβπ) β π) < (lim supβπΉ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1541 β wcel 2106 β²wnfc 2883 βwral 3061 βwrex 3070 class class class wbr 5148 βΆwf 6539 βcfv 6543 (class class class)co 7408 βcr 11108 < clt 11247 β cmin 11443 β€cz 12557 β€β₯cuz 12821 β+crp 12973 lim supclsp 15413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-xadd 13092 df-ico 13329 df-fz 13484 df-fzo 13627 df-fl 13756 df-ceil 13757 df-limsup 15414 |
This theorem is referenced by: liminfltlem 44510 liminflimsupclim 44513 |
Copyright terms: Public domain | W3C validator |