Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupgt Structured version   Visualization version   GIF version

Theorem limsupgt 42066
Description: Given a sequence of real numbers, there exists an upper part of the sequence that's appxoximated from below by the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
limsupgt.k 𝑘𝐹
limsupgt.m (𝜑𝑀 ∈ ℤ)
limsupgt.z 𝑍 = (ℤ𝑀)
limsupgt.f (𝜑𝐹:𝑍⟶ℝ)
limsupgt.r (𝜑 → (lim sup‘𝐹) ∈ ℝ)
limsupgt.x (𝜑𝑋 ∈ ℝ+)
Assertion
Ref Expression
limsupgt (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹))
Distinct variable groups:   𝑗,𝐹   𝑗,𝑋,𝑘   𝑗,𝑍
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐹(𝑘)   𝑀(𝑗,𝑘)   𝑍(𝑘)

Proof of Theorem limsupgt
Dummy variables 𝑖 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsupgt.m . . 3 (𝜑𝑀 ∈ ℤ)
2 limsupgt.z . . 3 𝑍 = (ℤ𝑀)
3 limsupgt.f . . 3 (𝜑𝐹:𝑍⟶ℝ)
4 limsupgt.r . . 3 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
5 limsupgt.x . . 3 (𝜑𝑋 ∈ ℝ+)
61, 2, 3, 4, 5limsupgtlem 42065 . 2 (𝜑 → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)((𝐹𝑙) − 𝑋) < (lim sup‘𝐹))
7 limsupgt.k . . . . . . . . 9 𝑘𝐹
8 nfcv 2979 . . . . . . . . 9 𝑘𝑙
97, 8nffv 6682 . . . . . . . 8 𝑘(𝐹𝑙)
10 nfcv 2979 . . . . . . . 8 𝑘
11 nfcv 2979 . . . . . . . 8 𝑘𝑋
129, 10, 11nfov 7188 . . . . . . 7 𝑘((𝐹𝑙) − 𝑋)
13 nfcv 2979 . . . . . . 7 𝑘 <
14 nfcv 2979 . . . . . . . 8 𝑘lim sup
1514, 7nffv 6682 . . . . . . 7 𝑘(lim sup‘𝐹)
1612, 13, 15nfbr 5115 . . . . . 6 𝑘((𝐹𝑙) − 𝑋) < (lim sup‘𝐹)
17 nfv 1915 . . . . . 6 𝑙((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)
18 fveq2 6672 . . . . . . . 8 (𝑙 = 𝑘 → (𝐹𝑙) = (𝐹𝑘))
1918oveq1d 7173 . . . . . . 7 (𝑙 = 𝑘 → ((𝐹𝑙) − 𝑋) = ((𝐹𝑘) − 𝑋))
2019breq1d 5078 . . . . . 6 (𝑙 = 𝑘 → (((𝐹𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)))
2116, 17, 20cbvralw 3443 . . . . 5 (∀𝑙 ∈ (ℤ𝑖)((𝐹𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹))
2221a1i 11 . . . 4 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)((𝐹𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)))
23 fveq2 6672 . . . . 5 (𝑖 = 𝑗 → (ℤ𝑖) = (ℤ𝑗))
2423raleqdv 3417 . . . 4 (𝑖 = 𝑗 → (∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)))
2522, 24bitrd 281 . . 3 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)((𝐹𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)))
2625cbvrexvw 3452 . 2 (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)((𝐹𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹))
276, 26sylib 220 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1537  wcel 2114  wnfc 2963  wral 3140  wrex 3141   class class class wbr 5068  wf 6353  cfv 6357  (class class class)co 7158  cr 10538   < clt 10677  cmin 10872  cz 11984  cuz 12246  +crp 12392  lim supclsp 14829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-xadd 12511  df-ico 12747  df-fz 12896  df-fzo 13037  df-fl 13165  df-ceil 13166  df-limsup 14830
This theorem is referenced by:  liminfltlem  42092  liminflimsupclim  42095
  Copyright terms: Public domain W3C validator