Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupgt | Structured version Visualization version GIF version |
Description: Given a sequence of real numbers, there exists an upper part of the sequence that's appxoximated from below by the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
limsupgt.k | ⊢ Ⅎ𝑘𝐹 |
limsupgt.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
limsupgt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
limsupgt.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
limsupgt.r | ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ) |
limsupgt.x | ⊢ (𝜑 → 𝑋 ∈ ℝ+) |
Ref | Expression |
---|---|
limsupgt | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupgt.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | limsupgt.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | limsupgt.f | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
4 | limsupgt.r | . . 3 ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ) | |
5 | limsupgt.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℝ+) | |
6 | 1, 2, 3, 4, 5 | limsupgtlem 43704 | . 2 ⊢ (𝜑 → ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)((𝐹‘𝑙) − 𝑋) < (lim sup‘𝐹)) |
7 | limsupgt.k | . . . . . . . . 9 ⊢ Ⅎ𝑘𝐹 | |
8 | nfcv 2905 | . . . . . . . . 9 ⊢ Ⅎ𝑘𝑙 | |
9 | 7, 8 | nffv 6840 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝐹‘𝑙) |
10 | nfcv 2905 | . . . . . . . 8 ⊢ Ⅎ𝑘 − | |
11 | nfcv 2905 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑋 | |
12 | 9, 10, 11 | nfov 7372 | . . . . . . 7 ⊢ Ⅎ𝑘((𝐹‘𝑙) − 𝑋) |
13 | nfcv 2905 | . . . . . . 7 ⊢ Ⅎ𝑘 < | |
14 | nfcv 2905 | . . . . . . . 8 ⊢ Ⅎ𝑘lim sup | |
15 | 14, 7 | nffv 6840 | . . . . . . 7 ⊢ Ⅎ𝑘(lim sup‘𝐹) |
16 | 12, 13, 15 | nfbr 5144 | . . . . . 6 ⊢ Ⅎ𝑘((𝐹‘𝑙) − 𝑋) < (lim sup‘𝐹) |
17 | nfv 1917 | . . . . . 6 ⊢ Ⅎ𝑙((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹) | |
18 | fveq2 6830 | . . . . . . . 8 ⊢ (𝑙 = 𝑘 → (𝐹‘𝑙) = (𝐹‘𝑘)) | |
19 | 18 | oveq1d 7357 | . . . . . . 7 ⊢ (𝑙 = 𝑘 → ((𝐹‘𝑙) − 𝑋) = ((𝐹‘𝑘) − 𝑋)) |
20 | 19 | breq1d 5107 | . . . . . 6 ⊢ (𝑙 = 𝑘 → (((𝐹‘𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹))) |
21 | 16, 17, 20 | cbvralw 3286 | . . . . 5 ⊢ (∀𝑙 ∈ (ℤ≥‘𝑖)((𝐹‘𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ≥‘𝑖)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹)) |
22 | 21 | a1i 11 | . . . 4 ⊢ (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ≥‘𝑖)((𝐹‘𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ≥‘𝑖)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹))) |
23 | fveq2 6830 | . . . . 5 ⊢ (𝑖 = 𝑗 → (ℤ≥‘𝑖) = (ℤ≥‘𝑗)) | |
24 | 23 | raleqdv 3310 | . . . 4 ⊢ (𝑖 = 𝑗 → (∀𝑘 ∈ (ℤ≥‘𝑖)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹))) |
25 | 22, 24 | bitrd 279 | . . 3 ⊢ (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ≥‘𝑖)((𝐹‘𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹))) |
26 | 25 | cbvrexvw 3223 | . 2 ⊢ (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)((𝐹‘𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹)) |
27 | 6, 26 | sylib 217 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 Ⅎwnfc 2885 ∀wral 3062 ∃wrex 3071 class class class wbr 5097 ⟶wf 6480 ‘cfv 6484 (class class class)co 7342 ℝcr 10976 < clt 11115 − cmin 11311 ℤcz 12425 ℤ≥cuz 12688 ℝ+crp 12836 lim supclsp 15279 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 ax-pre-sup 11055 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-1st 7904 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-er 8574 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-sup 9304 df-inf 9305 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-div 11739 df-nn 12080 df-2 12142 df-n0 12340 df-z 12426 df-uz 12689 df-rp 12837 df-xadd 12955 df-ico 13191 df-fz 13346 df-fzo 13489 df-fl 13618 df-ceil 13619 df-limsup 15280 |
This theorem is referenced by: liminfltlem 43731 liminflimsupclim 43734 |
Copyright terms: Public domain | W3C validator |