Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupgt Structured version   Visualization version   GIF version

Theorem limsupgt 45938
Description: Given a sequence of real numbers, there exists an upper part of the sequence that's appxoximated from below by the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
limsupgt.k 𝑘𝐹
limsupgt.m (𝜑𝑀 ∈ ℤ)
limsupgt.z 𝑍 = (ℤ𝑀)
limsupgt.f (𝜑𝐹:𝑍⟶ℝ)
limsupgt.r (𝜑 → (lim sup‘𝐹) ∈ ℝ)
limsupgt.x (𝜑𝑋 ∈ ℝ+)
Assertion
Ref Expression
limsupgt (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹))
Distinct variable groups:   𝑗,𝐹   𝑗,𝑋,𝑘   𝑗,𝑍
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐹(𝑘)   𝑀(𝑗,𝑘)   𝑍(𝑘)

Proof of Theorem limsupgt
Dummy variables 𝑖 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsupgt.m . . 3 (𝜑𝑀 ∈ ℤ)
2 limsupgt.z . . 3 𝑍 = (ℤ𝑀)
3 limsupgt.f . . 3 (𝜑𝐹:𝑍⟶ℝ)
4 limsupgt.r . . 3 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
5 limsupgt.x . . 3 (𝜑𝑋 ∈ ℝ+)
61, 2, 3, 4, 5limsupgtlem 45937 . 2 (𝜑 → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)((𝐹𝑙) − 𝑋) < (lim sup‘𝐹))
7 limsupgt.k . . . . . . . . 9 𝑘𝐹
8 nfcv 2895 . . . . . . . . 9 𝑘𝑙
97, 8nffv 6841 . . . . . . . 8 𝑘(𝐹𝑙)
10 nfcv 2895 . . . . . . . 8 𝑘
11 nfcv 2895 . . . . . . . 8 𝑘𝑋
129, 10, 11nfov 7385 . . . . . . 7 𝑘((𝐹𝑙) − 𝑋)
13 nfcv 2895 . . . . . . 7 𝑘 <
14 nfcv 2895 . . . . . . . 8 𝑘lim sup
1514, 7nffv 6841 . . . . . . 7 𝑘(lim sup‘𝐹)
1612, 13, 15nfbr 5142 . . . . . 6 𝑘((𝐹𝑙) − 𝑋) < (lim sup‘𝐹)
17 nfv 1915 . . . . . 6 𝑙((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)
18 fveq2 6831 . . . . . . . 8 (𝑙 = 𝑘 → (𝐹𝑙) = (𝐹𝑘))
1918oveq1d 7370 . . . . . . 7 (𝑙 = 𝑘 → ((𝐹𝑙) − 𝑋) = ((𝐹𝑘) − 𝑋))
2019breq1d 5105 . . . . . 6 (𝑙 = 𝑘 → (((𝐹𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)))
2116, 17, 20cbvralw 3275 . . . . 5 (∀𝑙 ∈ (ℤ𝑖)((𝐹𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹))
2221a1i 11 . . . 4 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)((𝐹𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)))
23 fveq2 6831 . . . . 5 (𝑖 = 𝑗 → (ℤ𝑖) = (ℤ𝑗))
2423raleqdv 3293 . . . 4 (𝑖 = 𝑗 → (∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)))
2522, 24bitrd 279 . . 3 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)((𝐹𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)))
2625cbvrexvw 3212 . 2 (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)((𝐹𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹))
276, 26sylib 218 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  wnfc 2880  wral 3048  wrex 3057   class class class wbr 5095  wf 6485  cfv 6489  (class class class)co 7355  cr 11016   < clt 11157  cmin 11355  cz 12479  cuz 12742  +crp 12896  lim supclsp 15384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-n0 12393  df-z 12480  df-uz 12743  df-rp 12897  df-xadd 13018  df-ico 13258  df-fz 13415  df-fzo 13562  df-fl 13703  df-ceil 13704  df-limsup 15385
This theorem is referenced by:  liminfltlem  45964  liminflimsupclim  45967
  Copyright terms: Public domain W3C validator