Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupgt Structured version   Visualization version   GIF version

Theorem limsupgt 45779
Description: Given a sequence of real numbers, there exists an upper part of the sequence that's appxoximated from below by the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
limsupgt.k 𝑘𝐹
limsupgt.m (𝜑𝑀 ∈ ℤ)
limsupgt.z 𝑍 = (ℤ𝑀)
limsupgt.f (𝜑𝐹:𝑍⟶ℝ)
limsupgt.r (𝜑 → (lim sup‘𝐹) ∈ ℝ)
limsupgt.x (𝜑𝑋 ∈ ℝ+)
Assertion
Ref Expression
limsupgt (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹))
Distinct variable groups:   𝑗,𝐹   𝑗,𝑋,𝑘   𝑗,𝑍
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐹(𝑘)   𝑀(𝑗,𝑘)   𝑍(𝑘)

Proof of Theorem limsupgt
Dummy variables 𝑖 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsupgt.m . . 3 (𝜑𝑀 ∈ ℤ)
2 limsupgt.z . . 3 𝑍 = (ℤ𝑀)
3 limsupgt.f . . 3 (𝜑𝐹:𝑍⟶ℝ)
4 limsupgt.r . . 3 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
5 limsupgt.x . . 3 (𝜑𝑋 ∈ ℝ+)
61, 2, 3, 4, 5limsupgtlem 45778 . 2 (𝜑 → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)((𝐹𝑙) − 𝑋) < (lim sup‘𝐹))
7 limsupgt.k . . . . . . . . 9 𝑘𝐹
8 nfcv 2891 . . . . . . . . 9 𝑘𝑙
97, 8nffv 6836 . . . . . . . 8 𝑘(𝐹𝑙)
10 nfcv 2891 . . . . . . . 8 𝑘
11 nfcv 2891 . . . . . . . 8 𝑘𝑋
129, 10, 11nfov 7383 . . . . . . 7 𝑘((𝐹𝑙) − 𝑋)
13 nfcv 2891 . . . . . . 7 𝑘 <
14 nfcv 2891 . . . . . . . 8 𝑘lim sup
1514, 7nffv 6836 . . . . . . 7 𝑘(lim sup‘𝐹)
1612, 13, 15nfbr 5142 . . . . . 6 𝑘((𝐹𝑙) − 𝑋) < (lim sup‘𝐹)
17 nfv 1914 . . . . . 6 𝑙((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)
18 fveq2 6826 . . . . . . . 8 (𝑙 = 𝑘 → (𝐹𝑙) = (𝐹𝑘))
1918oveq1d 7368 . . . . . . 7 (𝑙 = 𝑘 → ((𝐹𝑙) − 𝑋) = ((𝐹𝑘) − 𝑋))
2019breq1d 5105 . . . . . 6 (𝑙 = 𝑘 → (((𝐹𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)))
2116, 17, 20cbvralw 3272 . . . . 5 (∀𝑙 ∈ (ℤ𝑖)((𝐹𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹))
2221a1i 11 . . . 4 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)((𝐹𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)))
23 fveq2 6826 . . . . 5 (𝑖 = 𝑗 → (ℤ𝑖) = (ℤ𝑗))
2423raleqdv 3290 . . . 4 (𝑖 = 𝑗 → (∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)))
2522, 24bitrd 279 . . 3 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)((𝐹𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)))
2625cbvrexvw 3208 . 2 (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)((𝐹𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹))
276, 26sylib 218 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wnfc 2876  wral 3044  wrex 3053   class class class wbr 5095  wf 6482  cfv 6486  (class class class)co 7353  cr 11027   < clt 11168  cmin 11366  cz 12490  cuz 12754  +crp 12912  lim supclsp 15396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-n0 12404  df-z 12491  df-uz 12755  df-rp 12913  df-xadd 13034  df-ico 13273  df-fz 13430  df-fzo 13577  df-fl 13715  df-ceil 13716  df-limsup 15397
This theorem is referenced by:  liminfltlem  45805  liminflimsupclim  45808
  Copyright terms: Public domain W3C validator