![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupgt | Structured version Visualization version GIF version |
Description: Given a sequence of real numbers, there exists an upper part of the sequence that's appxoximated from below by the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
limsupgt.k | β’ β²ππΉ |
limsupgt.m | β’ (π β π β β€) |
limsupgt.z | β’ π = (β€β₯βπ) |
limsupgt.f | β’ (π β πΉ:πβΆβ) |
limsupgt.r | β’ (π β (lim supβπΉ) β β) |
limsupgt.x | β’ (π β π β β+) |
Ref | Expression |
---|---|
limsupgt | β’ (π β βπ β π βπ β (β€β₯βπ)((πΉβπ) β π) < (lim supβπΉ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupgt.m | . . 3 β’ (π β π β β€) | |
2 | limsupgt.z | . . 3 β’ π = (β€β₯βπ) | |
3 | limsupgt.f | . . 3 β’ (π β πΉ:πβΆβ) | |
4 | limsupgt.r | . . 3 β’ (π β (lim supβπΉ) β β) | |
5 | limsupgt.x | . . 3 β’ (π β π β β+) | |
6 | 1, 2, 3, 4, 5 | limsupgtlem 44104 | . 2 β’ (π β βπ β π βπ β (β€β₯βπ)((πΉβπ) β π) < (lim supβπΉ)) |
7 | limsupgt.k | . . . . . . . . 9 β’ β²ππΉ | |
8 | nfcv 2904 | . . . . . . . . 9 β’ β²ππ | |
9 | 7, 8 | nffv 6853 | . . . . . . . 8 β’ β²π(πΉβπ) |
10 | nfcv 2904 | . . . . . . . 8 β’ β²π β | |
11 | nfcv 2904 | . . . . . . . 8 β’ β²ππ | |
12 | 9, 10, 11 | nfov 7388 | . . . . . . 7 β’ β²π((πΉβπ) β π) |
13 | nfcv 2904 | . . . . . . 7 β’ β²π < | |
14 | nfcv 2904 | . . . . . . . 8 β’ β²πlim sup | |
15 | 14, 7 | nffv 6853 | . . . . . . 7 β’ β²π(lim supβπΉ) |
16 | 12, 13, 15 | nfbr 5153 | . . . . . 6 β’ β²π((πΉβπ) β π) < (lim supβπΉ) |
17 | nfv 1918 | . . . . . 6 β’ β²π((πΉβπ) β π) < (lim supβπΉ) | |
18 | fveq2 6843 | . . . . . . . 8 β’ (π = π β (πΉβπ) = (πΉβπ)) | |
19 | 18 | oveq1d 7373 | . . . . . . 7 β’ (π = π β ((πΉβπ) β π) = ((πΉβπ) β π)) |
20 | 19 | breq1d 5116 | . . . . . 6 β’ (π = π β (((πΉβπ) β π) < (lim supβπΉ) β ((πΉβπ) β π) < (lim supβπΉ))) |
21 | 16, 17, 20 | cbvralw 3288 | . . . . 5 β’ (βπ β (β€β₯βπ)((πΉβπ) β π) < (lim supβπΉ) β βπ β (β€β₯βπ)((πΉβπ) β π) < (lim supβπΉ)) |
22 | 21 | a1i 11 | . . . 4 β’ (π = π β (βπ β (β€β₯βπ)((πΉβπ) β π) < (lim supβπΉ) β βπ β (β€β₯βπ)((πΉβπ) β π) < (lim supβπΉ))) |
23 | fveq2 6843 | . . . . 5 β’ (π = π β (β€β₯βπ) = (β€β₯βπ)) | |
24 | 23 | raleqdv 3312 | . . . 4 β’ (π = π β (βπ β (β€β₯βπ)((πΉβπ) β π) < (lim supβπΉ) β βπ β (β€β₯βπ)((πΉβπ) β π) < (lim supβπΉ))) |
25 | 22, 24 | bitrd 279 | . . 3 β’ (π = π β (βπ β (β€β₯βπ)((πΉβπ) β π) < (lim supβπΉ) β βπ β (β€β₯βπ)((πΉβπ) β π) < (lim supβπΉ))) |
26 | 25 | cbvrexvw 3225 | . 2 β’ (βπ β π βπ β (β€β₯βπ)((πΉβπ) β π) < (lim supβπΉ) β βπ β π βπ β (β€β₯βπ)((πΉβπ) β π) < (lim supβπΉ)) |
27 | 6, 26 | sylib 217 | 1 β’ (π β βπ β π βπ β (β€β₯βπ)((πΉβπ) β π) < (lim supβπΉ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1542 β wcel 2107 β²wnfc 2884 βwral 3061 βwrex 3070 class class class wbr 5106 βΆwf 6493 βcfv 6497 (class class class)co 7358 βcr 11055 < clt 11194 β cmin 11390 β€cz 12504 β€β₯cuz 12768 β+crp 12920 lim supclsp 15358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 ax-pre-sup 11134 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-1o 8413 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-fin 8890 df-sup 9383 df-inf 9384 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-div 11818 df-nn 12159 df-2 12221 df-n0 12419 df-z 12505 df-uz 12769 df-rp 12921 df-xadd 13039 df-ico 13276 df-fz 13431 df-fzo 13574 df-fl 13703 df-ceil 13704 df-limsup 15359 |
This theorem is referenced by: liminfltlem 44131 liminflimsupclim 44134 |
Copyright terms: Public domain | W3C validator |