![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupgt | Structured version Visualization version GIF version |
Description: Given a sequence of real numbers, there exists an upper part of the sequence that's appxoximated from below by the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
limsupgt.k | ⊢ Ⅎ𝑘𝐹 |
limsupgt.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
limsupgt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
limsupgt.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
limsupgt.r | ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ) |
limsupgt.x | ⊢ (𝜑 → 𝑋 ∈ ℝ+) |
Ref | Expression |
---|---|
limsupgt | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupgt.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | limsupgt.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | limsupgt.f | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
4 | limsupgt.r | . . 3 ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ) | |
5 | limsupgt.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℝ+) | |
6 | 1, 2, 3, 4, 5 | limsupgtlem 45698 | . 2 ⊢ (𝜑 → ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)((𝐹‘𝑙) − 𝑋) < (lim sup‘𝐹)) |
7 | limsupgt.k | . . . . . . . . 9 ⊢ Ⅎ𝑘𝐹 | |
8 | nfcv 2908 | . . . . . . . . 9 ⊢ Ⅎ𝑘𝑙 | |
9 | 7, 8 | nffv 6930 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝐹‘𝑙) |
10 | nfcv 2908 | . . . . . . . 8 ⊢ Ⅎ𝑘 − | |
11 | nfcv 2908 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑋 | |
12 | 9, 10, 11 | nfov 7478 | . . . . . . 7 ⊢ Ⅎ𝑘((𝐹‘𝑙) − 𝑋) |
13 | nfcv 2908 | . . . . . . 7 ⊢ Ⅎ𝑘 < | |
14 | nfcv 2908 | . . . . . . . 8 ⊢ Ⅎ𝑘lim sup | |
15 | 14, 7 | nffv 6930 | . . . . . . 7 ⊢ Ⅎ𝑘(lim sup‘𝐹) |
16 | 12, 13, 15 | nfbr 5213 | . . . . . 6 ⊢ Ⅎ𝑘((𝐹‘𝑙) − 𝑋) < (lim sup‘𝐹) |
17 | nfv 1913 | . . . . . 6 ⊢ Ⅎ𝑙((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹) | |
18 | fveq2 6920 | . . . . . . . 8 ⊢ (𝑙 = 𝑘 → (𝐹‘𝑙) = (𝐹‘𝑘)) | |
19 | 18 | oveq1d 7463 | . . . . . . 7 ⊢ (𝑙 = 𝑘 → ((𝐹‘𝑙) − 𝑋) = ((𝐹‘𝑘) − 𝑋)) |
20 | 19 | breq1d 5176 | . . . . . 6 ⊢ (𝑙 = 𝑘 → (((𝐹‘𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹))) |
21 | 16, 17, 20 | cbvralw 3312 | . . . . 5 ⊢ (∀𝑙 ∈ (ℤ≥‘𝑖)((𝐹‘𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ≥‘𝑖)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹)) |
22 | 21 | a1i 11 | . . . 4 ⊢ (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ≥‘𝑖)((𝐹‘𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ≥‘𝑖)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹))) |
23 | fveq2 6920 | . . . . 5 ⊢ (𝑖 = 𝑗 → (ℤ≥‘𝑖) = (ℤ≥‘𝑗)) | |
24 | 23 | raleqdv 3334 | . . . 4 ⊢ (𝑖 = 𝑗 → (∀𝑘 ∈ (ℤ≥‘𝑖)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹))) |
25 | 22, 24 | bitrd 279 | . . 3 ⊢ (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ≥‘𝑖)((𝐹‘𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹))) |
26 | 25 | cbvrexvw 3244 | . 2 ⊢ (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)((𝐹‘𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹)) |
27 | 6, 26 | sylib 218 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 Ⅎwnfc 2893 ∀wral 3067 ∃wrex 3076 class class class wbr 5166 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 < clt 11324 − cmin 11520 ℤcz 12639 ℤ≥cuz 12903 ℝ+crp 13057 lim supclsp 15516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-xadd 13176 df-ico 13413 df-fz 13568 df-fzo 13712 df-fl 13843 df-ceil 13844 df-limsup 15517 |
This theorem is referenced by: liminfltlem 45725 liminflimsupclim 45728 |
Copyright terms: Public domain | W3C validator |