Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupgt | Structured version Visualization version GIF version |
Description: Given a sequence of real numbers, there exists an upper part of the sequence that's appxoximated from below by the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
limsupgt.k | ⊢ Ⅎ𝑘𝐹 |
limsupgt.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
limsupgt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
limsupgt.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
limsupgt.r | ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ) |
limsupgt.x | ⊢ (𝜑 → 𝑋 ∈ ℝ+) |
Ref | Expression |
---|---|
limsupgt | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupgt.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | limsupgt.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | limsupgt.f | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
4 | limsupgt.r | . . 3 ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ) | |
5 | limsupgt.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℝ+) | |
6 | 1, 2, 3, 4, 5 | limsupgtlem 43208 | . 2 ⊢ (𝜑 → ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)((𝐹‘𝑙) − 𝑋) < (lim sup‘𝐹)) |
7 | limsupgt.k | . . . . . . . . 9 ⊢ Ⅎ𝑘𝐹 | |
8 | nfcv 2906 | . . . . . . . . 9 ⊢ Ⅎ𝑘𝑙 | |
9 | 7, 8 | nffv 6766 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝐹‘𝑙) |
10 | nfcv 2906 | . . . . . . . 8 ⊢ Ⅎ𝑘 − | |
11 | nfcv 2906 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑋 | |
12 | 9, 10, 11 | nfov 7285 | . . . . . . 7 ⊢ Ⅎ𝑘((𝐹‘𝑙) − 𝑋) |
13 | nfcv 2906 | . . . . . . 7 ⊢ Ⅎ𝑘 < | |
14 | nfcv 2906 | . . . . . . . 8 ⊢ Ⅎ𝑘lim sup | |
15 | 14, 7 | nffv 6766 | . . . . . . 7 ⊢ Ⅎ𝑘(lim sup‘𝐹) |
16 | 12, 13, 15 | nfbr 5117 | . . . . . 6 ⊢ Ⅎ𝑘((𝐹‘𝑙) − 𝑋) < (lim sup‘𝐹) |
17 | nfv 1918 | . . . . . 6 ⊢ Ⅎ𝑙((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹) | |
18 | fveq2 6756 | . . . . . . . 8 ⊢ (𝑙 = 𝑘 → (𝐹‘𝑙) = (𝐹‘𝑘)) | |
19 | 18 | oveq1d 7270 | . . . . . . 7 ⊢ (𝑙 = 𝑘 → ((𝐹‘𝑙) − 𝑋) = ((𝐹‘𝑘) − 𝑋)) |
20 | 19 | breq1d 5080 | . . . . . 6 ⊢ (𝑙 = 𝑘 → (((𝐹‘𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹))) |
21 | 16, 17, 20 | cbvralw 3363 | . . . . 5 ⊢ (∀𝑙 ∈ (ℤ≥‘𝑖)((𝐹‘𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ≥‘𝑖)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹)) |
22 | 21 | a1i 11 | . . . 4 ⊢ (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ≥‘𝑖)((𝐹‘𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ≥‘𝑖)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹))) |
23 | fveq2 6756 | . . . . 5 ⊢ (𝑖 = 𝑗 → (ℤ≥‘𝑖) = (ℤ≥‘𝑗)) | |
24 | 23 | raleqdv 3339 | . . . 4 ⊢ (𝑖 = 𝑗 → (∀𝑘 ∈ (ℤ≥‘𝑖)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹))) |
25 | 22, 24 | bitrd 278 | . . 3 ⊢ (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ≥‘𝑖)((𝐹‘𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹))) |
26 | 25 | cbvrexvw 3373 | . 2 ⊢ (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)((𝐹‘𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹)) |
27 | 6, 26 | sylib 217 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 Ⅎwnfc 2886 ∀wral 3063 ∃wrex 3064 class class class wbr 5070 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 < clt 10940 − cmin 11135 ℤcz 12249 ℤ≥cuz 12511 ℝ+crp 12659 lim supclsp 15107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-xadd 12778 df-ico 13014 df-fz 13169 df-fzo 13312 df-fl 13440 df-ceil 13441 df-limsup 15108 |
This theorem is referenced by: liminfltlem 43235 liminflimsupclim 43238 |
Copyright terms: Public domain | W3C validator |