| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupgt | Structured version Visualization version GIF version | ||
| Description: Given a sequence of real numbers, there exists an upper part of the sequence that's appxoximated from below by the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| limsupgt.k | ⊢ Ⅎ𝑘𝐹 |
| limsupgt.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| limsupgt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| limsupgt.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
| limsupgt.r | ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ) |
| limsupgt.x | ⊢ (𝜑 → 𝑋 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| limsupgt | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsupgt.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | limsupgt.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 3 | limsupgt.f | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
| 4 | limsupgt.r | . . 3 ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ) | |
| 5 | limsupgt.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℝ+) | |
| 6 | 1, 2, 3, 4, 5 | limsupgtlem 45937 | . 2 ⊢ (𝜑 → ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)((𝐹‘𝑙) − 𝑋) < (lim sup‘𝐹)) |
| 7 | limsupgt.k | . . . . . . . . 9 ⊢ Ⅎ𝑘𝐹 | |
| 8 | nfcv 2895 | . . . . . . . . 9 ⊢ Ⅎ𝑘𝑙 | |
| 9 | 7, 8 | nffv 6841 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝐹‘𝑙) |
| 10 | nfcv 2895 | . . . . . . . 8 ⊢ Ⅎ𝑘 − | |
| 11 | nfcv 2895 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑋 | |
| 12 | 9, 10, 11 | nfov 7385 | . . . . . . 7 ⊢ Ⅎ𝑘((𝐹‘𝑙) − 𝑋) |
| 13 | nfcv 2895 | . . . . . . 7 ⊢ Ⅎ𝑘 < | |
| 14 | nfcv 2895 | . . . . . . . 8 ⊢ Ⅎ𝑘lim sup | |
| 15 | 14, 7 | nffv 6841 | . . . . . . 7 ⊢ Ⅎ𝑘(lim sup‘𝐹) |
| 16 | 12, 13, 15 | nfbr 5142 | . . . . . 6 ⊢ Ⅎ𝑘((𝐹‘𝑙) − 𝑋) < (lim sup‘𝐹) |
| 17 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑙((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹) | |
| 18 | fveq2 6831 | . . . . . . . 8 ⊢ (𝑙 = 𝑘 → (𝐹‘𝑙) = (𝐹‘𝑘)) | |
| 19 | 18 | oveq1d 7370 | . . . . . . 7 ⊢ (𝑙 = 𝑘 → ((𝐹‘𝑙) − 𝑋) = ((𝐹‘𝑘) − 𝑋)) |
| 20 | 19 | breq1d 5105 | . . . . . 6 ⊢ (𝑙 = 𝑘 → (((𝐹‘𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹))) |
| 21 | 16, 17, 20 | cbvralw 3275 | . . . . 5 ⊢ (∀𝑙 ∈ (ℤ≥‘𝑖)((𝐹‘𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ≥‘𝑖)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹)) |
| 22 | 21 | a1i 11 | . . . 4 ⊢ (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ≥‘𝑖)((𝐹‘𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ≥‘𝑖)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹))) |
| 23 | fveq2 6831 | . . . . 5 ⊢ (𝑖 = 𝑗 → (ℤ≥‘𝑖) = (ℤ≥‘𝑗)) | |
| 24 | 23 | raleqdv 3293 | . . . 4 ⊢ (𝑖 = 𝑗 → (∀𝑘 ∈ (ℤ≥‘𝑖)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹))) |
| 25 | 22, 24 | bitrd 279 | . . 3 ⊢ (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ≥‘𝑖)((𝐹‘𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹))) |
| 26 | 25 | cbvrexvw 3212 | . 2 ⊢ (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)((𝐹‘𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹)) |
| 27 | 6, 26 | sylib 218 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 Ⅎwnfc 2880 ∀wral 3048 ∃wrex 3057 class class class wbr 5095 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ℝcr 11016 < clt 11157 − cmin 11355 ℤcz 12479 ℤ≥cuz 12742 ℝ+crp 12896 lim supclsp 15384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9337 df-inf 9338 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-n0 12393 df-z 12480 df-uz 12743 df-rp 12897 df-xadd 13018 df-ico 13258 df-fz 13415 df-fzo 13562 df-fl 13703 df-ceil 13704 df-limsup 15385 |
| This theorem is referenced by: liminfltlem 45964 liminflimsupclim 45967 |
| Copyright terms: Public domain | W3C validator |