Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupgt Structured version   Visualization version   GIF version

Theorem limsupgt 45793
Description: Given a sequence of real numbers, there exists an upper part of the sequence that's appxoximated from below by the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
limsupgt.k 𝑘𝐹
limsupgt.m (𝜑𝑀 ∈ ℤ)
limsupgt.z 𝑍 = (ℤ𝑀)
limsupgt.f (𝜑𝐹:𝑍⟶ℝ)
limsupgt.r (𝜑 → (lim sup‘𝐹) ∈ ℝ)
limsupgt.x (𝜑𝑋 ∈ ℝ+)
Assertion
Ref Expression
limsupgt (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹))
Distinct variable groups:   𝑗,𝐹   𝑗,𝑋,𝑘   𝑗,𝑍
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐹(𝑘)   𝑀(𝑗,𝑘)   𝑍(𝑘)

Proof of Theorem limsupgt
Dummy variables 𝑖 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsupgt.m . . 3 (𝜑𝑀 ∈ ℤ)
2 limsupgt.z . . 3 𝑍 = (ℤ𝑀)
3 limsupgt.f . . 3 (𝜑𝐹:𝑍⟶ℝ)
4 limsupgt.r . . 3 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
5 limsupgt.x . . 3 (𝜑𝑋 ∈ ℝ+)
61, 2, 3, 4, 5limsupgtlem 45792 . 2 (𝜑 → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)((𝐹𝑙) − 𝑋) < (lim sup‘𝐹))
7 limsupgt.k . . . . . . . . 9 𝑘𝐹
8 nfcv 2905 . . . . . . . . 9 𝑘𝑙
97, 8nffv 6916 . . . . . . . 8 𝑘(𝐹𝑙)
10 nfcv 2905 . . . . . . . 8 𝑘
11 nfcv 2905 . . . . . . . 8 𝑘𝑋
129, 10, 11nfov 7461 . . . . . . 7 𝑘((𝐹𝑙) − 𝑋)
13 nfcv 2905 . . . . . . 7 𝑘 <
14 nfcv 2905 . . . . . . . 8 𝑘lim sup
1514, 7nffv 6916 . . . . . . 7 𝑘(lim sup‘𝐹)
1612, 13, 15nfbr 5190 . . . . . 6 𝑘((𝐹𝑙) − 𝑋) < (lim sup‘𝐹)
17 nfv 1914 . . . . . 6 𝑙((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)
18 fveq2 6906 . . . . . . . 8 (𝑙 = 𝑘 → (𝐹𝑙) = (𝐹𝑘))
1918oveq1d 7446 . . . . . . 7 (𝑙 = 𝑘 → ((𝐹𝑙) − 𝑋) = ((𝐹𝑘) − 𝑋))
2019breq1d 5153 . . . . . 6 (𝑙 = 𝑘 → (((𝐹𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)))
2116, 17, 20cbvralw 3306 . . . . 5 (∀𝑙 ∈ (ℤ𝑖)((𝐹𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹))
2221a1i 11 . . . 4 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)((𝐹𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)))
23 fveq2 6906 . . . . 5 (𝑖 = 𝑗 → (ℤ𝑖) = (ℤ𝑗))
2423raleqdv 3326 . . . 4 (𝑖 = 𝑗 → (∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)))
2522, 24bitrd 279 . . 3 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)((𝐹𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)))
2625cbvrexvw 3238 . 2 (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)((𝐹𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹))
276, 26sylib 218 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  wnfc 2890  wral 3061  wrex 3070   class class class wbr 5143  wf 6557  cfv 6561  (class class class)co 7431  cr 11154   < clt 11295  cmin 11492  cz 12613  cuz 12878  +crp 13034  lim supclsp 15506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-xadd 13155  df-ico 13393  df-fz 13548  df-fzo 13695  df-fl 13832  df-ceil 13833  df-limsup 15507
This theorem is referenced by:  liminfltlem  45819  liminflimsupclim  45822
  Copyright terms: Public domain W3C validator