Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupgt Structured version   Visualization version   GIF version

Theorem limsupgt 45699
Description: Given a sequence of real numbers, there exists an upper part of the sequence that's appxoximated from below by the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
limsupgt.k 𝑘𝐹
limsupgt.m (𝜑𝑀 ∈ ℤ)
limsupgt.z 𝑍 = (ℤ𝑀)
limsupgt.f (𝜑𝐹:𝑍⟶ℝ)
limsupgt.r (𝜑 → (lim sup‘𝐹) ∈ ℝ)
limsupgt.x (𝜑𝑋 ∈ ℝ+)
Assertion
Ref Expression
limsupgt (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹))
Distinct variable groups:   𝑗,𝐹   𝑗,𝑋,𝑘   𝑗,𝑍
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐹(𝑘)   𝑀(𝑗,𝑘)   𝑍(𝑘)

Proof of Theorem limsupgt
Dummy variables 𝑖 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsupgt.m . . 3 (𝜑𝑀 ∈ ℤ)
2 limsupgt.z . . 3 𝑍 = (ℤ𝑀)
3 limsupgt.f . . 3 (𝜑𝐹:𝑍⟶ℝ)
4 limsupgt.r . . 3 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
5 limsupgt.x . . 3 (𝜑𝑋 ∈ ℝ+)
61, 2, 3, 4, 5limsupgtlem 45698 . 2 (𝜑 → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)((𝐹𝑙) − 𝑋) < (lim sup‘𝐹))
7 limsupgt.k . . . . . . . . 9 𝑘𝐹
8 nfcv 2908 . . . . . . . . 9 𝑘𝑙
97, 8nffv 6930 . . . . . . . 8 𝑘(𝐹𝑙)
10 nfcv 2908 . . . . . . . 8 𝑘
11 nfcv 2908 . . . . . . . 8 𝑘𝑋
129, 10, 11nfov 7478 . . . . . . 7 𝑘((𝐹𝑙) − 𝑋)
13 nfcv 2908 . . . . . . 7 𝑘 <
14 nfcv 2908 . . . . . . . 8 𝑘lim sup
1514, 7nffv 6930 . . . . . . 7 𝑘(lim sup‘𝐹)
1612, 13, 15nfbr 5213 . . . . . 6 𝑘((𝐹𝑙) − 𝑋) < (lim sup‘𝐹)
17 nfv 1913 . . . . . 6 𝑙((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)
18 fveq2 6920 . . . . . . . 8 (𝑙 = 𝑘 → (𝐹𝑙) = (𝐹𝑘))
1918oveq1d 7463 . . . . . . 7 (𝑙 = 𝑘 → ((𝐹𝑙) − 𝑋) = ((𝐹𝑘) − 𝑋))
2019breq1d 5176 . . . . . 6 (𝑙 = 𝑘 → (((𝐹𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)))
2116, 17, 20cbvralw 3312 . . . . 5 (∀𝑙 ∈ (ℤ𝑖)((𝐹𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹))
2221a1i 11 . . . 4 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)((𝐹𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)))
23 fveq2 6920 . . . . 5 (𝑖 = 𝑗 → (ℤ𝑖) = (ℤ𝑗))
2423raleqdv 3334 . . . 4 (𝑖 = 𝑗 → (∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)))
2522, 24bitrd 279 . . 3 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)((𝐹𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)))
2625cbvrexvw 3244 . 2 (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)((𝐹𝑙) − 𝑋) < (lim sup‘𝐹) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹))
276, 26sylib 218 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  wnfc 2893  wral 3067  wrex 3076   class class class wbr 5166  wf 6569  cfv 6573  (class class class)co 7448  cr 11183   < clt 11324  cmin 11520  cz 12639  cuz 12903  +crp 13057  lim supclsp 15516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-xadd 13176  df-ico 13413  df-fz 13568  df-fzo 13712  df-fl 13843  df-ceil 13844  df-limsup 15517
This theorem is referenced by:  liminfltlem  45725  liminflimsupclim  45728
  Copyright terms: Public domain W3C validator