Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincresunitlem1 Structured version   Visualization version   GIF version

Theorem lincresunitlem1 47466
Description: Lemma 1 for properties of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.)
Hypotheses
Ref Expression
lincresunit.b 𝐡 = (Baseβ€˜π‘€)
lincresunit.r 𝑅 = (Scalarβ€˜π‘€)
lincresunit.e 𝐸 = (Baseβ€˜π‘…)
lincresunit.u π‘ˆ = (Unitβ€˜π‘…)
lincresunit.0 0 = (0gβ€˜π‘…)
lincresunit.z 𝑍 = (0gβ€˜π‘€)
lincresunit.n 𝑁 = (invgβ€˜π‘…)
lincresunit.i 𝐼 = (invrβ€˜π‘…)
lincresunit.t Β· = (.rβ€˜π‘…)
lincresunit.g 𝐺 = (𝑠 ∈ (𝑆 βˆ– {𝑋}) ↦ ((πΌβ€˜(π‘β€˜(πΉβ€˜π‘‹))) Β· (πΉβ€˜π‘ )))
Assertion
Ref Expression
lincresunitlem1 (((𝑆 ∈ 𝒫 𝐡 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (πΉβ€˜π‘‹) ∈ π‘ˆ)) β†’ (πΌβ€˜(π‘β€˜(πΉβ€˜π‘‹))) ∈ 𝐸)

Proof of Theorem lincresunitlem1
StepHypRef Expression
1 lincresunit.r . . . . 5 𝑅 = (Scalarβ€˜π‘€)
21lmodring 20740 . . . 4 (𝑀 ∈ LMod β†’ 𝑅 ∈ Ring)
323ad2ant2 1132 . . 3 ((𝑆 ∈ 𝒫 𝐡 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) β†’ 𝑅 ∈ Ring)
43adantr 480 . 2 (((𝑆 ∈ 𝒫 𝐡 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (πΉβ€˜π‘‹) ∈ π‘ˆ)) β†’ 𝑅 ∈ Ring)
5 simpr 484 . . 3 ((𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (πΉβ€˜π‘‹) ∈ π‘ˆ) β†’ (πΉβ€˜π‘‹) ∈ π‘ˆ)
6 lincresunit.u . . . 4 π‘ˆ = (Unitβ€˜π‘…)
7 lincresunit.n . . . 4 𝑁 = (invgβ€˜π‘…)
86, 7unitnegcl 20325 . . 3 ((𝑅 ∈ Ring ∧ (πΉβ€˜π‘‹) ∈ π‘ˆ) β†’ (π‘β€˜(πΉβ€˜π‘‹)) ∈ π‘ˆ)
93, 5, 8syl2an 595 . 2 (((𝑆 ∈ 𝒫 𝐡 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (πΉβ€˜π‘‹) ∈ π‘ˆ)) β†’ (π‘β€˜(πΉβ€˜π‘‹)) ∈ π‘ˆ)
10 lincresunit.i . . 3 𝐼 = (invrβ€˜π‘…)
11 lincresunit.e . . 3 𝐸 = (Baseβ€˜π‘…)
126, 10, 11ringinvcl 20320 . 2 ((𝑅 ∈ Ring ∧ (π‘β€˜(πΉβ€˜π‘‹)) ∈ π‘ˆ) β†’ (πΌβ€˜(π‘β€˜(πΉβ€˜π‘‹))) ∈ 𝐸)
134, 9, 12syl2anc 583 1 (((𝑆 ∈ 𝒫 𝐡 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (πΉβ€˜π‘‹) ∈ π‘ˆ)) β†’ (πΌβ€˜(π‘β€˜(πΉβ€˜π‘‹))) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099   βˆ– cdif 3941  π’« cpw 4598  {csn 4624   ↦ cmpt 5225  β€˜cfv 6542  (class class class)co 7414   ↑m cmap 8836  Basecbs 17171  .rcmulr 17225  Scalarcsca 17227  0gc0g 17412  invgcminusg 18882  Ringcrg 20164  Unitcui 20283  invrcinvr 20315  LModclmod 20732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-2nd 7988  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-3 12298  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-mulr 17238  df-0g 17414  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-grp 18884  df-minusg 18885  df-cmn 19728  df-abl 19729  df-mgp 20066  df-rng 20084  df-ur 20113  df-ring 20166  df-oppr 20262  df-dvdsr 20285  df-unit 20286  df-invr 20316  df-lmod 20734
This theorem is referenced by:  lincresunitlem2  47467  lincresunit2  47469
  Copyright terms: Public domain W3C validator