Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcdvsub Structured version   Visualization version   GIF version

Theorem lcdvsub 41565
Description: The value of vector subtraction in the closed kernel dual space. (Contributed by NM, 22-Mar-2015.)
Hypotheses
Ref Expression
lcdvsub.h 𝐻 = (LHyp‘𝐾)
lcdvsub.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcdvsub.s 𝑆 = (Scalar‘𝑈)
lcdvsub.n 𝑁 = (invg𝑆)
lcdvsub.e 1 = (1r𝑆)
lcdvsub.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
lcdvsub.v 𝑉 = (Base‘𝐶)
lcdvsub.p + = (+g𝐶)
lcdvsub.t · = ( ·𝑠𝐶)
lcdvsub.m = (-g𝐶)
lcdvsub.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcdvsub.f (𝜑𝐹𝑉)
lcdvsub.g (𝜑𝐺𝑉)
Assertion
Ref Expression
lcdvsub (𝜑 → (𝐹 𝐺) = (𝐹 + ((𝑁1 ) · 𝐺)))

Proof of Theorem lcdvsub
StepHypRef Expression
1 lcdvsub.h . . . 4 𝐻 = (LHyp‘𝐾)
2 lcdvsub.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
3 lcdvsub.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3lcdlmod 41540 . . 3 (𝜑𝐶 ∈ LMod)
5 lcdvsub.f . . 3 (𝜑𝐹𝑉)
6 lcdvsub.g . . 3 (𝜑𝐺𝑉)
7 lcdvsub.v . . . 4 𝑉 = (Base‘𝐶)
8 lcdvsub.p . . . 4 + = (+g𝐶)
9 lcdvsub.m . . . 4 = (-g𝐶)
10 eqid 2734 . . . 4 (Scalar‘𝐶) = (Scalar‘𝐶)
11 lcdvsub.t . . . 4 · = ( ·𝑠𝐶)
12 eqid 2734 . . . 4 (invg‘(Scalar‘𝐶)) = (invg‘(Scalar‘𝐶))
13 eqid 2734 . . . 4 (1r‘(Scalar‘𝐶)) = (1r‘(Scalar‘𝐶))
147, 8, 9, 10, 11, 12, 13lmodvsubval2 20861 . . 3 ((𝐶 ∈ LMod ∧ 𝐹𝑉𝐺𝑉) → (𝐹 𝐺) = (𝐹 + (((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶))) · 𝐺)))
154, 5, 6, 14syl3anc 1372 . 2 (𝜑 → (𝐹 𝐺) = (𝐹 + (((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶))) · 𝐺)))
16 eqid 2734 . . . . . . 7 (oppr𝑆) = (oppr𝑆)
17 lcdvsub.n . . . . . . 7 𝑁 = (invg𝑆)
1816, 17opprneg 20298 . . . . . 6 𝑁 = (invg‘(oppr𝑆))
19 lcdvsub.u . . . . . . . 8 𝑈 = ((DVecH‘𝐾)‘𝑊)
20 lcdvsub.s . . . . . . . 8 𝑆 = (Scalar‘𝑈)
211, 19, 20, 16, 2, 10, 3lcdsca 41547 . . . . . . 7 (𝜑 → (Scalar‘𝐶) = (oppr𝑆))
2221fveq2d 6877 . . . . . 6 (𝜑 → (invg‘(Scalar‘𝐶)) = (invg‘(oppr𝑆)))
2318, 22eqtr4id 2788 . . . . 5 (𝜑𝑁 = (invg‘(Scalar‘𝐶)))
24 lcdvsub.e . . . . . . 7 1 = (1r𝑆)
2516, 24oppr1 20297 . . . . . 6 1 = (1r‘(oppr𝑆))
2621fveq2d 6877 . . . . . 6 (𝜑 → (1r‘(Scalar‘𝐶)) = (1r‘(oppr𝑆)))
2725, 26eqtr4id 2788 . . . . 5 (𝜑1 = (1r‘(Scalar‘𝐶)))
2823, 27fveq12d 6880 . . . 4 (𝜑 → (𝑁1 ) = ((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶))))
2928oveq1d 7415 . . 3 (𝜑 → ((𝑁1 ) · 𝐺) = (((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶))) · 𝐺))
3029oveq2d 7416 . 2 (𝜑 → (𝐹 + ((𝑁1 ) · 𝐺)) = (𝐹 + (((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶))) · 𝐺)))
3115, 30eqtr4d 2772 1 (𝜑 → (𝐹 𝐺) = (𝐹 + ((𝑁1 ) · 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cfv 6528  (class class class)co 7400  Basecbs 17215  +gcplusg 17258  Scalarcsca 17261   ·𝑠 cvsca 17262  invgcminusg 18904  -gcsg 18905  1rcur 20128  opprcoppr 20283  LModclmod 20804  HLchlt 39297  LHypclh 39932  DVecHcdvh 41026  LCDualclcd 41534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199  ax-riotaBAD 38900
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4882  df-int 4921  df-iun 4967  df-iin 4968  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-of 7666  df-om 7857  df-1st 7983  df-2nd 7984  df-tpos 8220  df-undef 8267  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-2o 8476  df-er 8714  df-map 8837  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-nn 12234  df-2 12296  df-3 12297  df-4 12298  df-5 12299  df-6 12300  df-n0 12495  df-z 12582  df-uz 12846  df-fz 13515  df-struct 17153  df-sets 17170  df-slot 17188  df-ndx 17200  df-base 17216  df-ress 17239  df-plusg 17271  df-mulr 17272  df-sca 17274  df-vsca 17275  df-0g 17442  df-mre 17585  df-mrc 17586  df-acs 17588  df-proset 18293  df-poset 18312  df-plt 18327  df-lub 18343  df-glb 18344  df-join 18345  df-meet 18346  df-p0 18422  df-p1 18423  df-lat 18429  df-clat 18496  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-submnd 18749  df-grp 18906  df-minusg 18907  df-sbg 18908  df-subg 19093  df-cntz 19287  df-oppg 19316  df-lsm 19604  df-cmn 19750  df-abl 19751  df-mgp 20088  df-rng 20100  df-ur 20129  df-ring 20182  df-oppr 20284  df-dvdsr 20304  df-unit 20305  df-invr 20335  df-dvr 20348  df-nzr 20460  df-rlreg 20641  df-domn 20642  df-drng 20678  df-lmod 20806  df-lss 20876  df-lsp 20916  df-lvec 21048  df-lsatoms 38923  df-lshyp 38924  df-lcv 38966  df-lfl 39005  df-lkr 39033  df-ldual 39071  df-oposet 39123  df-ol 39125  df-oml 39126  df-covers 39213  df-ats 39214  df-atl 39245  df-cvlat 39269  df-hlat 39298  df-llines 39446  df-lplanes 39447  df-lvols 39448  df-lines 39449  df-psubsp 39451  df-pmap 39452  df-padd 39744  df-lhyp 39936  df-laut 39937  df-ldil 40052  df-ltrn 40053  df-trl 40107  df-tgrp 40691  df-tendo 40703  df-edring 40705  df-dveca 40951  df-disoa 40977  df-dvech 41027  df-dib 41087  df-dic 41121  df-dih 41177  df-doch 41296  df-djh 41343  df-lcdual 41535
This theorem is referenced by:  mapdpglem30  41650
  Copyright terms: Public domain W3C validator