| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcdvsub | Structured version Visualization version GIF version | ||
| Description: The value of vector subtraction in the closed kernel dual space. (Contributed by NM, 22-Mar-2015.) |
| Ref | Expression |
|---|---|
| lcdvsub.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| lcdvsub.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| lcdvsub.s | ⊢ 𝑆 = (Scalar‘𝑈) |
| lcdvsub.n | ⊢ 𝑁 = (invg‘𝑆) |
| lcdvsub.e | ⊢ 1 = (1r‘𝑆) |
| lcdvsub.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| lcdvsub.v | ⊢ 𝑉 = (Base‘𝐶) |
| lcdvsub.p | ⊢ + = (+g‘𝐶) |
| lcdvsub.t | ⊢ · = ( ·𝑠 ‘𝐶) |
| lcdvsub.m | ⊢ − = (-g‘𝐶) |
| lcdvsub.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| lcdvsub.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| lcdvsub.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| lcdvsub | ⊢ (𝜑 → (𝐹 − 𝐺) = (𝐹 + ((𝑁‘ 1 ) · 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcdvsub.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | lcdvsub.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 3 | lcdvsub.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 4 | 1, 2, 3 | lcdlmod 41540 | . . 3 ⊢ (𝜑 → 𝐶 ∈ LMod) |
| 5 | lcdvsub.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 6 | lcdvsub.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 7 | lcdvsub.v | . . . 4 ⊢ 𝑉 = (Base‘𝐶) | |
| 8 | lcdvsub.p | . . . 4 ⊢ + = (+g‘𝐶) | |
| 9 | lcdvsub.m | . . . 4 ⊢ − = (-g‘𝐶) | |
| 10 | eqid 2734 | . . . 4 ⊢ (Scalar‘𝐶) = (Scalar‘𝐶) | |
| 11 | lcdvsub.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝐶) | |
| 12 | eqid 2734 | . . . 4 ⊢ (invg‘(Scalar‘𝐶)) = (invg‘(Scalar‘𝐶)) | |
| 13 | eqid 2734 | . . . 4 ⊢ (1r‘(Scalar‘𝐶)) = (1r‘(Scalar‘𝐶)) | |
| 14 | 7, 8, 9, 10, 11, 12, 13 | lmodvsubval2 20861 | . . 3 ⊢ ((𝐶 ∈ LMod ∧ 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉) → (𝐹 − 𝐺) = (𝐹 + (((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶))) · 𝐺))) |
| 15 | 4, 5, 6, 14 | syl3anc 1372 | . 2 ⊢ (𝜑 → (𝐹 − 𝐺) = (𝐹 + (((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶))) · 𝐺))) |
| 16 | eqid 2734 | . . . . . . 7 ⊢ (oppr‘𝑆) = (oppr‘𝑆) | |
| 17 | lcdvsub.n | . . . . . . 7 ⊢ 𝑁 = (invg‘𝑆) | |
| 18 | 16, 17 | opprneg 20298 | . . . . . 6 ⊢ 𝑁 = (invg‘(oppr‘𝑆)) |
| 19 | lcdvsub.u | . . . . . . . 8 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 20 | lcdvsub.s | . . . . . . . 8 ⊢ 𝑆 = (Scalar‘𝑈) | |
| 21 | 1, 19, 20, 16, 2, 10, 3 | lcdsca 41547 | . . . . . . 7 ⊢ (𝜑 → (Scalar‘𝐶) = (oppr‘𝑆)) |
| 22 | 21 | fveq2d 6877 | . . . . . 6 ⊢ (𝜑 → (invg‘(Scalar‘𝐶)) = (invg‘(oppr‘𝑆))) |
| 23 | 18, 22 | eqtr4id 2788 | . . . . 5 ⊢ (𝜑 → 𝑁 = (invg‘(Scalar‘𝐶))) |
| 24 | lcdvsub.e | . . . . . . 7 ⊢ 1 = (1r‘𝑆) | |
| 25 | 16, 24 | oppr1 20297 | . . . . . 6 ⊢ 1 = (1r‘(oppr‘𝑆)) |
| 26 | 21 | fveq2d 6877 | . . . . . 6 ⊢ (𝜑 → (1r‘(Scalar‘𝐶)) = (1r‘(oppr‘𝑆))) |
| 27 | 25, 26 | eqtr4id 2788 | . . . . 5 ⊢ (𝜑 → 1 = (1r‘(Scalar‘𝐶))) |
| 28 | 23, 27 | fveq12d 6880 | . . . 4 ⊢ (𝜑 → (𝑁‘ 1 ) = ((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))) |
| 29 | 28 | oveq1d 7415 | . . 3 ⊢ (𝜑 → ((𝑁‘ 1 ) · 𝐺) = (((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶))) · 𝐺)) |
| 30 | 29 | oveq2d 7416 | . 2 ⊢ (𝜑 → (𝐹 + ((𝑁‘ 1 ) · 𝐺)) = (𝐹 + (((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶))) · 𝐺))) |
| 31 | 15, 30 | eqtr4d 2772 | 1 ⊢ (𝜑 → (𝐹 − 𝐺) = (𝐹 + ((𝑁‘ 1 ) · 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ‘cfv 6528 (class class class)co 7400 Basecbs 17215 +gcplusg 17258 Scalarcsca 17261 ·𝑠 cvsca 17262 invgcminusg 18904 -gcsg 18905 1rcur 20128 opprcoppr 20283 LModclmod 20804 HLchlt 39297 LHypclh 39932 DVecHcdvh 41026 LCDualclcd 41534 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 ax-riotaBAD 38900 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4882 df-int 4921 df-iun 4967 df-iin 4968 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-of 7666 df-om 7857 df-1st 7983 df-2nd 7984 df-tpos 8220 df-undef 8267 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-1o 8475 df-2o 8476 df-er 8714 df-map 8837 df-en 8955 df-dom 8956 df-sdom 8957 df-fin 8958 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-nn 12234 df-2 12296 df-3 12297 df-4 12298 df-5 12299 df-6 12300 df-n0 12495 df-z 12582 df-uz 12846 df-fz 13515 df-struct 17153 df-sets 17170 df-slot 17188 df-ndx 17200 df-base 17216 df-ress 17239 df-plusg 17271 df-mulr 17272 df-sca 17274 df-vsca 17275 df-0g 17442 df-mre 17585 df-mrc 17586 df-acs 17588 df-proset 18293 df-poset 18312 df-plt 18327 df-lub 18343 df-glb 18344 df-join 18345 df-meet 18346 df-p0 18422 df-p1 18423 df-lat 18429 df-clat 18496 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-submnd 18749 df-grp 18906 df-minusg 18907 df-sbg 18908 df-subg 19093 df-cntz 19287 df-oppg 19316 df-lsm 19604 df-cmn 19750 df-abl 19751 df-mgp 20088 df-rng 20100 df-ur 20129 df-ring 20182 df-oppr 20284 df-dvdsr 20304 df-unit 20305 df-invr 20335 df-dvr 20348 df-nzr 20460 df-rlreg 20641 df-domn 20642 df-drng 20678 df-lmod 20806 df-lss 20876 df-lsp 20916 df-lvec 21048 df-lsatoms 38923 df-lshyp 38924 df-lcv 38966 df-lfl 39005 df-lkr 39033 df-ldual 39071 df-oposet 39123 df-ol 39125 df-oml 39126 df-covers 39213 df-ats 39214 df-atl 39245 df-cvlat 39269 df-hlat 39298 df-llines 39446 df-lplanes 39447 df-lvols 39448 df-lines 39449 df-psubsp 39451 df-pmap 39452 df-padd 39744 df-lhyp 39936 df-laut 39937 df-ldil 40052 df-ltrn 40053 df-trl 40107 df-tgrp 40691 df-tendo 40703 df-edring 40705 df-dveca 40951 df-disoa 40977 df-dvech 41027 df-dib 41087 df-dic 41121 df-dih 41177 df-doch 41296 df-djh 41343 df-lcdual 41535 |
| This theorem is referenced by: mapdpglem30 41650 |
| Copyright terms: Public domain | W3C validator |