| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualvsub | Structured version Visualization version GIF version | ||
| Description: The value of vector subtraction in the dual of a vector space. (Contributed by NM, 27-Feb-2015.) |
| Ref | Expression |
|---|---|
| ldualvsub.r | ⊢ 𝑅 = (Scalar‘𝑊) |
| ldualvsub.n | ⊢ 𝑁 = (invg‘𝑅) |
| ldualvsub.u | ⊢ 1 = (1r‘𝑅) |
| ldualvsub.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| ldualvsub.d | ⊢ 𝐷 = (LDual‘𝑊) |
| ldualvsub.p | ⊢ + = (+g‘𝐷) |
| ldualvsub.t | ⊢ · = ( ·𝑠 ‘𝐷) |
| ldualvsub.m | ⊢ − = (-g‘𝐷) |
| ldualvsub.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| ldualvsub.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| ldualvsub.h | ⊢ (𝜑 → 𝐻 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| ldualvsub | ⊢ (𝜑 → (𝐺 − 𝐻) = (𝐺 + ((𝑁‘ 1 ) · 𝐻))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ldualvsub.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
| 2 | ldualvsub.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 3 | 1, 2 | lduallmod 39171 | . . 3 ⊢ (𝜑 → 𝐷 ∈ LMod) |
| 4 | ldualvsub.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 5 | eqid 2730 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 6 | ldualvsub.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 7 | 4, 1, 5, 2, 6 | ldualelvbase 39145 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (Base‘𝐷)) |
| 8 | ldualvsub.h | . . . 4 ⊢ (𝜑 → 𝐻 ∈ 𝐹) | |
| 9 | 4, 1, 5, 2, 8 | ldualelvbase 39145 | . . 3 ⊢ (𝜑 → 𝐻 ∈ (Base‘𝐷)) |
| 10 | ldualvsub.p | . . . 4 ⊢ + = (+g‘𝐷) | |
| 11 | ldualvsub.m | . . . 4 ⊢ − = (-g‘𝐷) | |
| 12 | eqid 2730 | . . . 4 ⊢ (Scalar‘𝐷) = (Scalar‘𝐷) | |
| 13 | ldualvsub.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝐷) | |
| 14 | eqid 2730 | . . . 4 ⊢ (invg‘(Scalar‘𝐷)) = (invg‘(Scalar‘𝐷)) | |
| 15 | eqid 2730 | . . . 4 ⊢ (1r‘(Scalar‘𝐷)) = (1r‘(Scalar‘𝐷)) | |
| 16 | 5, 10, 11, 12, 13, 14, 15 | lmodvsubval2 20843 | . . 3 ⊢ ((𝐷 ∈ LMod ∧ 𝐺 ∈ (Base‘𝐷) ∧ 𝐻 ∈ (Base‘𝐷)) → (𝐺 − 𝐻) = (𝐺 + (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻))) |
| 17 | 3, 7, 9, 16 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝐺 − 𝐻) = (𝐺 + (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻))) |
| 18 | eqid 2730 | . . . . . . 7 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
| 19 | ldualvsub.n | . . . . . . 7 ⊢ 𝑁 = (invg‘𝑅) | |
| 20 | 18, 19 | opprneg 20262 | . . . . . 6 ⊢ 𝑁 = (invg‘(oppr‘𝑅)) |
| 21 | ldualvsub.r | . . . . . . . 8 ⊢ 𝑅 = (Scalar‘𝑊) | |
| 22 | 21, 18, 1, 12, 2 | ldualsca 39150 | . . . . . . 7 ⊢ (𝜑 → (Scalar‘𝐷) = (oppr‘𝑅)) |
| 23 | 22 | fveq2d 6821 | . . . . . 6 ⊢ (𝜑 → (invg‘(Scalar‘𝐷)) = (invg‘(oppr‘𝑅))) |
| 24 | 20, 23 | eqtr4id 2784 | . . . . 5 ⊢ (𝜑 → 𝑁 = (invg‘(Scalar‘𝐷))) |
| 25 | ldualvsub.u | . . . . . . 7 ⊢ 1 = (1r‘𝑅) | |
| 26 | 18, 25 | oppr1 20261 | . . . . . 6 ⊢ 1 = (1r‘(oppr‘𝑅)) |
| 27 | 22 | fveq2d 6821 | . . . . . 6 ⊢ (𝜑 → (1r‘(Scalar‘𝐷)) = (1r‘(oppr‘𝑅))) |
| 28 | 26, 27 | eqtr4id 2784 | . . . . 5 ⊢ (𝜑 → 1 = (1r‘(Scalar‘𝐷))) |
| 29 | 24, 28 | fveq12d 6824 | . . . 4 ⊢ (𝜑 → (𝑁‘ 1 ) = ((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))) |
| 30 | 29 | oveq1d 7356 | . . 3 ⊢ (𝜑 → ((𝑁‘ 1 ) · 𝐻) = (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻)) |
| 31 | 30 | oveq2d 7357 | . 2 ⊢ (𝜑 → (𝐺 + ((𝑁‘ 1 ) · 𝐻)) = (𝐺 + (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻))) |
| 32 | 17, 31 | eqtr4d 2768 | 1 ⊢ (𝜑 → (𝐺 − 𝐻) = (𝐺 + ((𝑁‘ 1 ) · 𝐻))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 +gcplusg 17153 Scalarcsca 17156 ·𝑠 cvsca 17157 invgcminusg 18839 -gcsg 18840 1rcur 20092 opprcoppr 20247 LModclmod 20786 LFnlclfn 39075 LDualcld 39141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-n0 12374 df-z 12461 df-uz 12725 df-fz 13400 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-plusg 17166 df-mulr 17167 df-sca 17169 df-vsca 17170 df-0g 17337 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-grp 18841 df-minusg 18842 df-sbg 18843 df-cmn 19687 df-abl 19688 df-mgp 20052 df-rng 20064 df-ur 20093 df-ring 20146 df-oppr 20248 df-lmod 20788 df-lfl 39076 df-ldual 39142 |
| This theorem is referenced by: ldualvsubcl 39174 lcfrlem2 41561 |
| Copyright terms: Public domain | W3C validator |