![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualvsub | Structured version Visualization version GIF version |
Description: The value of vector subtraction in the dual of a vector space. (Contributed by NM, 27-Feb-2015.) |
Ref | Expression |
---|---|
ldualvsub.r | ⊢ 𝑅 = (Scalar‘𝑊) |
ldualvsub.n | ⊢ 𝑁 = (invg‘𝑅) |
ldualvsub.u | ⊢ 1 = (1r‘𝑅) |
ldualvsub.f | ⊢ 𝐹 = (LFnl‘𝑊) |
ldualvsub.d | ⊢ 𝐷 = (LDual‘𝑊) |
ldualvsub.p | ⊢ + = (+g‘𝐷) |
ldualvsub.t | ⊢ · = ( ·𝑠 ‘𝐷) |
ldualvsub.m | ⊢ − = (-g‘𝐷) |
ldualvsub.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
ldualvsub.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
ldualvsub.h | ⊢ (𝜑 → 𝐻 ∈ 𝐹) |
Ref | Expression |
---|---|
ldualvsub | ⊢ (𝜑 → (𝐺 − 𝐻) = (𝐺 + ((𝑁‘ 1 ) · 𝐻))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldualvsub.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
2 | ldualvsub.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
3 | 1, 2 | lduallmod 39109 | . . 3 ⊢ (𝜑 → 𝐷 ∈ LMod) |
4 | ldualvsub.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
5 | eqid 2740 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
6 | ldualvsub.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
7 | 4, 1, 5, 2, 6 | ldualelvbase 39083 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (Base‘𝐷)) |
8 | ldualvsub.h | . . . 4 ⊢ (𝜑 → 𝐻 ∈ 𝐹) | |
9 | 4, 1, 5, 2, 8 | ldualelvbase 39083 | . . 3 ⊢ (𝜑 → 𝐻 ∈ (Base‘𝐷)) |
10 | ldualvsub.p | . . . 4 ⊢ + = (+g‘𝐷) | |
11 | ldualvsub.m | . . . 4 ⊢ − = (-g‘𝐷) | |
12 | eqid 2740 | . . . 4 ⊢ (Scalar‘𝐷) = (Scalar‘𝐷) | |
13 | ldualvsub.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝐷) | |
14 | eqid 2740 | . . . 4 ⊢ (invg‘(Scalar‘𝐷)) = (invg‘(Scalar‘𝐷)) | |
15 | eqid 2740 | . . . 4 ⊢ (1r‘(Scalar‘𝐷)) = (1r‘(Scalar‘𝐷)) | |
16 | 5, 10, 11, 12, 13, 14, 15 | lmodvsubval2 20937 | . . 3 ⊢ ((𝐷 ∈ LMod ∧ 𝐺 ∈ (Base‘𝐷) ∧ 𝐻 ∈ (Base‘𝐷)) → (𝐺 − 𝐻) = (𝐺 + (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻))) |
17 | 3, 7, 9, 16 | syl3anc 1371 | . 2 ⊢ (𝜑 → (𝐺 − 𝐻) = (𝐺 + (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻))) |
18 | eqid 2740 | . . . . . . 7 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
19 | ldualvsub.n | . . . . . . 7 ⊢ 𝑁 = (invg‘𝑅) | |
20 | 18, 19 | opprneg 20377 | . . . . . 6 ⊢ 𝑁 = (invg‘(oppr‘𝑅)) |
21 | ldualvsub.r | . . . . . . . 8 ⊢ 𝑅 = (Scalar‘𝑊) | |
22 | 21, 18, 1, 12, 2 | ldualsca 39088 | . . . . . . 7 ⊢ (𝜑 → (Scalar‘𝐷) = (oppr‘𝑅)) |
23 | 22 | fveq2d 6924 | . . . . . 6 ⊢ (𝜑 → (invg‘(Scalar‘𝐷)) = (invg‘(oppr‘𝑅))) |
24 | 20, 23 | eqtr4id 2799 | . . . . 5 ⊢ (𝜑 → 𝑁 = (invg‘(Scalar‘𝐷))) |
25 | ldualvsub.u | . . . . . . 7 ⊢ 1 = (1r‘𝑅) | |
26 | 18, 25 | oppr1 20376 | . . . . . 6 ⊢ 1 = (1r‘(oppr‘𝑅)) |
27 | 22 | fveq2d 6924 | . . . . . 6 ⊢ (𝜑 → (1r‘(Scalar‘𝐷)) = (1r‘(oppr‘𝑅))) |
28 | 26, 27 | eqtr4id 2799 | . . . . 5 ⊢ (𝜑 → 1 = (1r‘(Scalar‘𝐷))) |
29 | 24, 28 | fveq12d 6927 | . . . 4 ⊢ (𝜑 → (𝑁‘ 1 ) = ((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))) |
30 | 29 | oveq1d 7463 | . . 3 ⊢ (𝜑 → ((𝑁‘ 1 ) · 𝐻) = (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻)) |
31 | 30 | oveq2d 7464 | . 2 ⊢ (𝜑 → (𝐺 + ((𝑁‘ 1 ) · 𝐻)) = (𝐺 + (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻))) |
32 | 17, 31 | eqtr4d 2783 | 1 ⊢ (𝜑 → (𝐺 − 𝐻) = (𝐺 + ((𝑁‘ 1 ) · 𝐻))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 Scalarcsca 17314 ·𝑠 cvsca 17315 invgcminusg 18974 -gcsg 18975 1rcur 20208 opprcoppr 20359 LModclmod 20880 LFnlclfn 39013 LDualcld 39079 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-lmod 20882 df-lfl 39014 df-ldual 39080 |
This theorem is referenced by: ldualvsubcl 39112 lcfrlem2 41500 |
Copyright terms: Public domain | W3C validator |