| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualvsub | Structured version Visualization version GIF version | ||
| Description: The value of vector subtraction in the dual of a vector space. (Contributed by NM, 27-Feb-2015.) |
| Ref | Expression |
|---|---|
| ldualvsub.r | ⊢ 𝑅 = (Scalar‘𝑊) |
| ldualvsub.n | ⊢ 𝑁 = (invg‘𝑅) |
| ldualvsub.u | ⊢ 1 = (1r‘𝑅) |
| ldualvsub.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| ldualvsub.d | ⊢ 𝐷 = (LDual‘𝑊) |
| ldualvsub.p | ⊢ + = (+g‘𝐷) |
| ldualvsub.t | ⊢ · = ( ·𝑠 ‘𝐷) |
| ldualvsub.m | ⊢ − = (-g‘𝐷) |
| ldualvsub.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| ldualvsub.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| ldualvsub.h | ⊢ (𝜑 → 𝐻 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| ldualvsub | ⊢ (𝜑 → (𝐺 − 𝐻) = (𝐺 + ((𝑁‘ 1 ) · 𝐻))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ldualvsub.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
| 2 | ldualvsub.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 3 | 1, 2 | lduallmod 39262 | . . 3 ⊢ (𝜑 → 𝐷 ∈ LMod) |
| 4 | ldualvsub.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 5 | eqid 2733 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 6 | ldualvsub.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 7 | 4, 1, 5, 2, 6 | ldualelvbase 39236 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (Base‘𝐷)) |
| 8 | ldualvsub.h | . . . 4 ⊢ (𝜑 → 𝐻 ∈ 𝐹) | |
| 9 | 4, 1, 5, 2, 8 | ldualelvbase 39236 | . . 3 ⊢ (𝜑 → 𝐻 ∈ (Base‘𝐷)) |
| 10 | ldualvsub.p | . . . 4 ⊢ + = (+g‘𝐷) | |
| 11 | ldualvsub.m | . . . 4 ⊢ − = (-g‘𝐷) | |
| 12 | eqid 2733 | . . . 4 ⊢ (Scalar‘𝐷) = (Scalar‘𝐷) | |
| 13 | ldualvsub.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝐷) | |
| 14 | eqid 2733 | . . . 4 ⊢ (invg‘(Scalar‘𝐷)) = (invg‘(Scalar‘𝐷)) | |
| 15 | eqid 2733 | . . . 4 ⊢ (1r‘(Scalar‘𝐷)) = (1r‘(Scalar‘𝐷)) | |
| 16 | 5, 10, 11, 12, 13, 14, 15 | lmodvsubval2 20860 | . . 3 ⊢ ((𝐷 ∈ LMod ∧ 𝐺 ∈ (Base‘𝐷) ∧ 𝐻 ∈ (Base‘𝐷)) → (𝐺 − 𝐻) = (𝐺 + (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻))) |
| 17 | 3, 7, 9, 16 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝐺 − 𝐻) = (𝐺 + (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻))) |
| 18 | eqid 2733 | . . . . . . 7 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
| 19 | ldualvsub.n | . . . . . . 7 ⊢ 𝑁 = (invg‘𝑅) | |
| 20 | 18, 19 | opprneg 20279 | . . . . . 6 ⊢ 𝑁 = (invg‘(oppr‘𝑅)) |
| 21 | ldualvsub.r | . . . . . . . 8 ⊢ 𝑅 = (Scalar‘𝑊) | |
| 22 | 21, 18, 1, 12, 2 | ldualsca 39241 | . . . . . . 7 ⊢ (𝜑 → (Scalar‘𝐷) = (oppr‘𝑅)) |
| 23 | 22 | fveq2d 6835 | . . . . . 6 ⊢ (𝜑 → (invg‘(Scalar‘𝐷)) = (invg‘(oppr‘𝑅))) |
| 24 | 20, 23 | eqtr4id 2787 | . . . . 5 ⊢ (𝜑 → 𝑁 = (invg‘(Scalar‘𝐷))) |
| 25 | ldualvsub.u | . . . . . . 7 ⊢ 1 = (1r‘𝑅) | |
| 26 | 18, 25 | oppr1 20278 | . . . . . 6 ⊢ 1 = (1r‘(oppr‘𝑅)) |
| 27 | 22 | fveq2d 6835 | . . . . . 6 ⊢ (𝜑 → (1r‘(Scalar‘𝐷)) = (1r‘(oppr‘𝑅))) |
| 28 | 26, 27 | eqtr4id 2787 | . . . . 5 ⊢ (𝜑 → 1 = (1r‘(Scalar‘𝐷))) |
| 29 | 24, 28 | fveq12d 6838 | . . . 4 ⊢ (𝜑 → (𝑁‘ 1 ) = ((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))) |
| 30 | 29 | oveq1d 7370 | . . 3 ⊢ (𝜑 → ((𝑁‘ 1 ) · 𝐻) = (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻)) |
| 31 | 30 | oveq2d 7371 | . 2 ⊢ (𝜑 → (𝐺 + ((𝑁‘ 1 ) · 𝐻)) = (𝐺 + (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻))) |
| 32 | 17, 31 | eqtr4d 2771 | 1 ⊢ (𝜑 → (𝐺 − 𝐻) = (𝐺 + ((𝑁‘ 1 ) · 𝐻))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ‘cfv 6489 (class class class)co 7355 Basecbs 17130 +gcplusg 17171 Scalarcsca 17174 ·𝑠 cvsca 17175 invgcminusg 18857 -gcsg 18858 1rcur 20109 opprcoppr 20264 LModclmod 20803 LFnlclfn 39166 LDualcld 39232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-n0 12392 df-z 12479 df-uz 12743 df-fz 13418 df-struct 17068 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-plusg 17184 df-mulr 17185 df-sca 17187 df-vsca 17188 df-0g 17355 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-grp 18859 df-minusg 18860 df-sbg 18861 df-cmn 19704 df-abl 19705 df-mgp 20069 df-rng 20081 df-ur 20110 df-ring 20163 df-oppr 20265 df-lmod 20805 df-lfl 39167 df-ldual 39233 |
| This theorem is referenced by: ldualvsubcl 39265 lcfrlem2 41652 |
| Copyright terms: Public domain | W3C validator |