![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualvsub | Structured version Visualization version GIF version |
Description: The value of vector subtraction in the dual of a vector space. (Contributed by NM, 27-Feb-2015.) |
Ref | Expression |
---|---|
ldualvsub.r | β’ π = (Scalarβπ) |
ldualvsub.n | β’ π = (invgβπ ) |
ldualvsub.u | β’ 1 = (1rβπ ) |
ldualvsub.f | β’ πΉ = (LFnlβπ) |
ldualvsub.d | β’ π· = (LDualβπ) |
ldualvsub.p | β’ + = (+gβπ·) |
ldualvsub.t | β’ Β· = ( Β·π βπ·) |
ldualvsub.m | β’ β = (-gβπ·) |
ldualvsub.w | β’ (π β π β LMod) |
ldualvsub.g | β’ (π β πΊ β πΉ) |
ldualvsub.h | β’ (π β π» β πΉ) |
Ref | Expression |
---|---|
ldualvsub | β’ (π β (πΊ β π») = (πΊ + ((πβ 1 ) Β· π»))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldualvsub.d | . . . 4 β’ π· = (LDualβπ) | |
2 | ldualvsub.w | . . . 4 β’ (π β π β LMod) | |
3 | 1, 2 | lduallmod 38023 | . . 3 β’ (π β π· β LMod) |
4 | ldualvsub.f | . . . 4 β’ πΉ = (LFnlβπ) | |
5 | eqid 2733 | . . . 4 β’ (Baseβπ·) = (Baseβπ·) | |
6 | ldualvsub.g | . . . 4 β’ (π β πΊ β πΉ) | |
7 | 4, 1, 5, 2, 6 | ldualelvbase 37997 | . . 3 β’ (π β πΊ β (Baseβπ·)) |
8 | ldualvsub.h | . . . 4 β’ (π β π» β πΉ) | |
9 | 4, 1, 5, 2, 8 | ldualelvbase 37997 | . . 3 β’ (π β π» β (Baseβπ·)) |
10 | ldualvsub.p | . . . 4 β’ + = (+gβπ·) | |
11 | ldualvsub.m | . . . 4 β’ β = (-gβπ·) | |
12 | eqid 2733 | . . . 4 β’ (Scalarβπ·) = (Scalarβπ·) | |
13 | ldualvsub.t | . . . 4 β’ Β· = ( Β·π βπ·) | |
14 | eqid 2733 | . . . 4 β’ (invgβ(Scalarβπ·)) = (invgβ(Scalarβπ·)) | |
15 | eqid 2733 | . . . 4 β’ (1rβ(Scalarβπ·)) = (1rβ(Scalarβπ·)) | |
16 | 5, 10, 11, 12, 13, 14, 15 | lmodvsubval2 20527 | . . 3 β’ ((π· β LMod β§ πΊ β (Baseβπ·) β§ π» β (Baseβπ·)) β (πΊ β π») = (πΊ + (((invgβ(Scalarβπ·))β(1rβ(Scalarβπ·))) Β· π»))) |
17 | 3, 7, 9, 16 | syl3anc 1372 | . 2 β’ (π β (πΊ β π») = (πΊ + (((invgβ(Scalarβπ·))β(1rβ(Scalarβπ·))) Β· π»))) |
18 | eqid 2733 | . . . . . . 7 β’ (opprβπ ) = (opprβπ ) | |
19 | ldualvsub.n | . . . . . . 7 β’ π = (invgβπ ) | |
20 | 18, 19 | opprneg 20165 | . . . . . 6 β’ π = (invgβ(opprβπ )) |
21 | ldualvsub.r | . . . . . . . 8 β’ π = (Scalarβπ) | |
22 | 21, 18, 1, 12, 2 | ldualsca 38002 | . . . . . . 7 β’ (π β (Scalarβπ·) = (opprβπ )) |
23 | 22 | fveq2d 6896 | . . . . . 6 β’ (π β (invgβ(Scalarβπ·)) = (invgβ(opprβπ ))) |
24 | 20, 23 | eqtr4id 2792 | . . . . 5 β’ (π β π = (invgβ(Scalarβπ·))) |
25 | ldualvsub.u | . . . . . . 7 β’ 1 = (1rβπ ) | |
26 | 18, 25 | oppr1 20164 | . . . . . 6 β’ 1 = (1rβ(opprβπ )) |
27 | 22 | fveq2d 6896 | . . . . . 6 β’ (π β (1rβ(Scalarβπ·)) = (1rβ(opprβπ ))) |
28 | 26, 27 | eqtr4id 2792 | . . . . 5 β’ (π β 1 = (1rβ(Scalarβπ·))) |
29 | 24, 28 | fveq12d 6899 | . . . 4 β’ (π β (πβ 1 ) = ((invgβ(Scalarβπ·))β(1rβ(Scalarβπ·)))) |
30 | 29 | oveq1d 7424 | . . 3 β’ (π β ((πβ 1 ) Β· π») = (((invgβ(Scalarβπ·))β(1rβ(Scalarβπ·))) Β· π»)) |
31 | 30 | oveq2d 7425 | . 2 β’ (π β (πΊ + ((πβ 1 ) Β· π»)) = (πΊ + (((invgβ(Scalarβπ·))β(1rβ(Scalarβπ·))) Β· π»))) |
32 | 17, 31 | eqtr4d 2776 | 1 β’ (π β (πΊ β π») = (πΊ + ((πβ 1 ) Β· π»))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 βcfv 6544 (class class class)co 7409 Basecbs 17144 +gcplusg 17197 Scalarcsca 17200 Β·π cvsca 17201 invgcminusg 18820 -gcsg 18821 1rcur 20004 opprcoppr 20149 LModclmod 20471 LFnlclfn 37927 LDualcld 37993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-of 7670 df-om 7856 df-1st 7975 df-2nd 7976 df-tpos 8211 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-plusg 17210 df-mulr 17211 df-sca 17213 df-vsca 17214 df-0g 17387 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-grp 18822 df-minusg 18823 df-sbg 18824 df-cmn 19650 df-abl 19651 df-mgp 19988 df-ur 20005 df-ring 20058 df-oppr 20150 df-lmod 20473 df-lfl 37928 df-ldual 37994 |
This theorem is referenced by: ldualvsubcl 38026 lcfrlem2 40414 |
Copyright terms: Public domain | W3C validator |