Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualvsub Structured version   Visualization version   GIF version

Theorem ldualvsub 37430
Description: The value of vector subtraction in the dual of a vector space. (Contributed by NM, 27-Feb-2015.)
Hypotheses
Ref Expression
ldualvsub.r 𝑅 = (Scalar‘𝑊)
ldualvsub.n 𝑁 = (invg𝑅)
ldualvsub.u 1 = (1r𝑅)
ldualvsub.f 𝐹 = (LFnl‘𝑊)
ldualvsub.d 𝐷 = (LDual‘𝑊)
ldualvsub.p + = (+g𝐷)
ldualvsub.t · = ( ·𝑠𝐷)
ldualvsub.m = (-g𝐷)
ldualvsub.w (𝜑𝑊 ∈ LMod)
ldualvsub.g (𝜑𝐺𝐹)
ldualvsub.h (𝜑𝐻𝐹)
Assertion
Ref Expression
ldualvsub (𝜑 → (𝐺 𝐻) = (𝐺 + ((𝑁1 ) · 𝐻)))

Proof of Theorem ldualvsub
StepHypRef Expression
1 ldualvsub.d . . . 4 𝐷 = (LDual‘𝑊)
2 ldualvsub.w . . . 4 (𝜑𝑊 ∈ LMod)
31, 2lduallmod 37428 . . 3 (𝜑𝐷 ∈ LMod)
4 ldualvsub.f . . . 4 𝐹 = (LFnl‘𝑊)
5 eqid 2736 . . . 4 (Base‘𝐷) = (Base‘𝐷)
6 ldualvsub.g . . . 4 (𝜑𝐺𝐹)
74, 1, 5, 2, 6ldualelvbase 37402 . . 3 (𝜑𝐺 ∈ (Base‘𝐷))
8 ldualvsub.h . . . 4 (𝜑𝐻𝐹)
94, 1, 5, 2, 8ldualelvbase 37402 . . 3 (𝜑𝐻 ∈ (Base‘𝐷))
10 ldualvsub.p . . . 4 + = (+g𝐷)
11 ldualvsub.m . . . 4 = (-g𝐷)
12 eqid 2736 . . . 4 (Scalar‘𝐷) = (Scalar‘𝐷)
13 ldualvsub.t . . . 4 · = ( ·𝑠𝐷)
14 eqid 2736 . . . 4 (invg‘(Scalar‘𝐷)) = (invg‘(Scalar‘𝐷))
15 eqid 2736 . . . 4 (1r‘(Scalar‘𝐷)) = (1r‘(Scalar‘𝐷))
165, 10, 11, 12, 13, 14, 15lmodvsubval2 20284 . . 3 ((𝐷 ∈ LMod ∧ 𝐺 ∈ (Base‘𝐷) ∧ 𝐻 ∈ (Base‘𝐷)) → (𝐺 𝐻) = (𝐺 + (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻)))
173, 7, 9, 16syl3anc 1370 . 2 (𝜑 → (𝐺 𝐻) = (𝐺 + (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻)))
18 eqid 2736 . . . . . . 7 (oppr𝑅) = (oppr𝑅)
19 ldualvsub.n . . . . . . 7 𝑁 = (invg𝑅)
2018, 19opprneg 19972 . . . . . 6 𝑁 = (invg‘(oppr𝑅))
21 ldualvsub.r . . . . . . . 8 𝑅 = (Scalar‘𝑊)
2221, 18, 1, 12, 2ldualsca 37407 . . . . . . 7 (𝜑 → (Scalar‘𝐷) = (oppr𝑅))
2322fveq2d 6829 . . . . . 6 (𝜑 → (invg‘(Scalar‘𝐷)) = (invg‘(oppr𝑅)))
2420, 23eqtr4id 2795 . . . . 5 (𝜑𝑁 = (invg‘(Scalar‘𝐷)))
25 ldualvsub.u . . . . . . 7 1 = (1r𝑅)
2618, 25oppr1 19971 . . . . . 6 1 = (1r‘(oppr𝑅))
2722fveq2d 6829 . . . . . 6 (𝜑 → (1r‘(Scalar‘𝐷)) = (1r‘(oppr𝑅)))
2826, 27eqtr4id 2795 . . . . 5 (𝜑1 = (1r‘(Scalar‘𝐷)))
2924, 28fveq12d 6832 . . . 4 (𝜑 → (𝑁1 ) = ((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))))
3029oveq1d 7352 . . 3 (𝜑 → ((𝑁1 ) · 𝐻) = (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻))
3130oveq2d 7353 . 2 (𝜑 → (𝐺 + ((𝑁1 ) · 𝐻)) = (𝐺 + (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻)))
3217, 31eqtr4d 2779 1 (𝜑 → (𝐺 𝐻) = (𝐺 + ((𝑁1 ) · 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  cfv 6479  (class class class)co 7337  Basecbs 17009  +gcplusg 17059  Scalarcsca 17062   ·𝑠 cvsca 17063  invgcminusg 18674  -gcsg 18675  1rcur 19832  opprcoppr 19956  LModclmod 20229  LFnlclfn 37332  LDualcld 37398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-of 7595  df-om 7781  df-1st 7899  df-2nd 7900  df-tpos 8112  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-er 8569  df-map 8688  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-nn 12075  df-2 12137  df-3 12138  df-4 12139  df-5 12140  df-6 12141  df-n0 12335  df-z 12421  df-uz 12684  df-fz 13341  df-struct 16945  df-sets 16962  df-slot 16980  df-ndx 16992  df-base 17010  df-plusg 17072  df-mulr 17073  df-sca 17075  df-vsca 17076  df-0g 17249  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-grp 18676  df-minusg 18677  df-sbg 18678  df-cmn 19483  df-abl 19484  df-mgp 19816  df-ur 19833  df-ring 19880  df-oppr 19957  df-lmod 20231  df-lfl 37333  df-ldual 37399
This theorem is referenced by:  ldualvsubcl  37431  lcfrlem2  39819
  Copyright terms: Public domain W3C validator