Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualvsub Structured version   Visualization version   GIF version

Theorem ldualvsub 39143
Description: The value of vector subtraction in the dual of a vector space. (Contributed by NM, 27-Feb-2015.)
Hypotheses
Ref Expression
ldualvsub.r 𝑅 = (Scalar‘𝑊)
ldualvsub.n 𝑁 = (invg𝑅)
ldualvsub.u 1 = (1r𝑅)
ldualvsub.f 𝐹 = (LFnl‘𝑊)
ldualvsub.d 𝐷 = (LDual‘𝑊)
ldualvsub.p + = (+g𝐷)
ldualvsub.t · = ( ·𝑠𝐷)
ldualvsub.m = (-g𝐷)
ldualvsub.w (𝜑𝑊 ∈ LMod)
ldualvsub.g (𝜑𝐺𝐹)
ldualvsub.h (𝜑𝐻𝐹)
Assertion
Ref Expression
ldualvsub (𝜑 → (𝐺 𝐻) = (𝐺 + ((𝑁1 ) · 𝐻)))

Proof of Theorem ldualvsub
StepHypRef Expression
1 ldualvsub.d . . . 4 𝐷 = (LDual‘𝑊)
2 ldualvsub.w . . . 4 (𝜑𝑊 ∈ LMod)
31, 2lduallmod 39141 . . 3 (𝜑𝐷 ∈ LMod)
4 ldualvsub.f . . . 4 𝐹 = (LFnl‘𝑊)
5 eqid 2730 . . . 4 (Base‘𝐷) = (Base‘𝐷)
6 ldualvsub.g . . . 4 (𝜑𝐺𝐹)
74, 1, 5, 2, 6ldualelvbase 39115 . . 3 (𝜑𝐺 ∈ (Base‘𝐷))
8 ldualvsub.h . . . 4 (𝜑𝐻𝐹)
94, 1, 5, 2, 8ldualelvbase 39115 . . 3 (𝜑𝐻 ∈ (Base‘𝐷))
10 ldualvsub.p . . . 4 + = (+g𝐷)
11 ldualvsub.m . . . 4 = (-g𝐷)
12 eqid 2730 . . . 4 (Scalar‘𝐷) = (Scalar‘𝐷)
13 ldualvsub.t . . . 4 · = ( ·𝑠𝐷)
14 eqid 2730 . . . 4 (invg‘(Scalar‘𝐷)) = (invg‘(Scalar‘𝐷))
15 eqid 2730 . . . 4 (1r‘(Scalar‘𝐷)) = (1r‘(Scalar‘𝐷))
165, 10, 11, 12, 13, 14, 15lmodvsubval2 20829 . . 3 ((𝐷 ∈ LMod ∧ 𝐺 ∈ (Base‘𝐷) ∧ 𝐻 ∈ (Base‘𝐷)) → (𝐺 𝐻) = (𝐺 + (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻)))
173, 7, 9, 16syl3anc 1373 . 2 (𝜑 → (𝐺 𝐻) = (𝐺 + (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻)))
18 eqid 2730 . . . . . . 7 (oppr𝑅) = (oppr𝑅)
19 ldualvsub.n . . . . . . 7 𝑁 = (invg𝑅)
2018, 19opprneg 20266 . . . . . 6 𝑁 = (invg‘(oppr𝑅))
21 ldualvsub.r . . . . . . . 8 𝑅 = (Scalar‘𝑊)
2221, 18, 1, 12, 2ldualsca 39120 . . . . . . 7 (𝜑 → (Scalar‘𝐷) = (oppr𝑅))
2322fveq2d 6864 . . . . . 6 (𝜑 → (invg‘(Scalar‘𝐷)) = (invg‘(oppr𝑅)))
2420, 23eqtr4id 2784 . . . . 5 (𝜑𝑁 = (invg‘(Scalar‘𝐷)))
25 ldualvsub.u . . . . . . 7 1 = (1r𝑅)
2618, 25oppr1 20265 . . . . . 6 1 = (1r‘(oppr𝑅))
2722fveq2d 6864 . . . . . 6 (𝜑 → (1r‘(Scalar‘𝐷)) = (1r‘(oppr𝑅)))
2826, 27eqtr4id 2784 . . . . 5 (𝜑1 = (1r‘(Scalar‘𝐷)))
2924, 28fveq12d 6867 . . . 4 (𝜑 → (𝑁1 ) = ((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))))
3029oveq1d 7404 . . 3 (𝜑 → ((𝑁1 ) · 𝐻) = (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻))
3130oveq2d 7405 . 2 (𝜑 → (𝐺 + ((𝑁1 ) · 𝐻)) = (𝐺 + (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻)))
3217, 31eqtr4d 2768 1 (𝜑 → (𝐺 𝐻) = (𝐺 + ((𝑁1 ) · 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6513  (class class class)co 7389  Basecbs 17185  +gcplusg 17226  Scalarcsca 17229   ·𝑠 cvsca 17230  invgcminusg 18872  -gcsg 18873  1rcur 20096  opprcoppr 20251  LModclmod 20772  LFnlclfn 39045  LDualcld 39111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-om 7845  df-1st 7970  df-2nd 7971  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-map 8803  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-n0 12449  df-z 12536  df-uz 12800  df-fz 13475  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-0g 17410  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-grp 18874  df-minusg 18875  df-sbg 18876  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-oppr 20252  df-lmod 20774  df-lfl 39046  df-ldual 39112
This theorem is referenced by:  ldualvsubcl  39144  lcfrlem2  41532
  Copyright terms: Public domain W3C validator