Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualvsub Structured version   Visualization version   GIF version

Theorem ldualvsub 39141
Description: The value of vector subtraction in the dual of a vector space. (Contributed by NM, 27-Feb-2015.)
Hypotheses
Ref Expression
ldualvsub.r 𝑅 = (Scalar‘𝑊)
ldualvsub.n 𝑁 = (invg𝑅)
ldualvsub.u 1 = (1r𝑅)
ldualvsub.f 𝐹 = (LFnl‘𝑊)
ldualvsub.d 𝐷 = (LDual‘𝑊)
ldualvsub.p + = (+g𝐷)
ldualvsub.t · = ( ·𝑠𝐷)
ldualvsub.m = (-g𝐷)
ldualvsub.w (𝜑𝑊 ∈ LMod)
ldualvsub.g (𝜑𝐺𝐹)
ldualvsub.h (𝜑𝐻𝐹)
Assertion
Ref Expression
ldualvsub (𝜑 → (𝐺 𝐻) = (𝐺 + ((𝑁1 ) · 𝐻)))

Proof of Theorem ldualvsub
StepHypRef Expression
1 ldualvsub.d . . . 4 𝐷 = (LDual‘𝑊)
2 ldualvsub.w . . . 4 (𝜑𝑊 ∈ LMod)
31, 2lduallmod 39139 . . 3 (𝜑𝐷 ∈ LMod)
4 ldualvsub.f . . . 4 𝐹 = (LFnl‘𝑊)
5 eqid 2729 . . . 4 (Base‘𝐷) = (Base‘𝐷)
6 ldualvsub.g . . . 4 (𝜑𝐺𝐹)
74, 1, 5, 2, 6ldualelvbase 39113 . . 3 (𝜑𝐺 ∈ (Base‘𝐷))
8 ldualvsub.h . . . 4 (𝜑𝐻𝐹)
94, 1, 5, 2, 8ldualelvbase 39113 . . 3 (𝜑𝐻 ∈ (Base‘𝐷))
10 ldualvsub.p . . . 4 + = (+g𝐷)
11 ldualvsub.m . . . 4 = (-g𝐷)
12 eqid 2729 . . . 4 (Scalar‘𝐷) = (Scalar‘𝐷)
13 ldualvsub.t . . . 4 · = ( ·𝑠𝐷)
14 eqid 2729 . . . 4 (invg‘(Scalar‘𝐷)) = (invg‘(Scalar‘𝐷))
15 eqid 2729 . . . 4 (1r‘(Scalar‘𝐷)) = (1r‘(Scalar‘𝐷))
165, 10, 11, 12, 13, 14, 15lmodvsubval2 20855 . . 3 ((𝐷 ∈ LMod ∧ 𝐺 ∈ (Base‘𝐷) ∧ 𝐻 ∈ (Base‘𝐷)) → (𝐺 𝐻) = (𝐺 + (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻)))
173, 7, 9, 16syl3anc 1373 . 2 (𝜑 → (𝐺 𝐻) = (𝐺 + (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻)))
18 eqid 2729 . . . . . . 7 (oppr𝑅) = (oppr𝑅)
19 ldualvsub.n . . . . . . 7 𝑁 = (invg𝑅)
2018, 19opprneg 20271 . . . . . 6 𝑁 = (invg‘(oppr𝑅))
21 ldualvsub.r . . . . . . . 8 𝑅 = (Scalar‘𝑊)
2221, 18, 1, 12, 2ldualsca 39118 . . . . . . 7 (𝜑 → (Scalar‘𝐷) = (oppr𝑅))
2322fveq2d 6844 . . . . . 6 (𝜑 → (invg‘(Scalar‘𝐷)) = (invg‘(oppr𝑅)))
2420, 23eqtr4id 2783 . . . . 5 (𝜑𝑁 = (invg‘(Scalar‘𝐷)))
25 ldualvsub.u . . . . . . 7 1 = (1r𝑅)
2618, 25oppr1 20270 . . . . . 6 1 = (1r‘(oppr𝑅))
2722fveq2d 6844 . . . . . 6 (𝜑 → (1r‘(Scalar‘𝐷)) = (1r‘(oppr𝑅)))
2826, 27eqtr4id 2783 . . . . 5 (𝜑1 = (1r‘(Scalar‘𝐷)))
2924, 28fveq12d 6847 . . . 4 (𝜑 → (𝑁1 ) = ((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))))
3029oveq1d 7384 . . 3 (𝜑 → ((𝑁1 ) · 𝐻) = (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻))
3130oveq2d 7385 . 2 (𝜑 → (𝐺 + ((𝑁1 ) · 𝐻)) = (𝐺 + (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻)))
3217, 31eqtr4d 2767 1 (𝜑 → (𝐺 𝐻) = (𝐺 + ((𝑁1 ) · 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  Scalarcsca 17199   ·𝑠 cvsca 17200  invgcminusg 18848  -gcsg 18849  1rcur 20101  opprcoppr 20256  LModclmod 20798  LFnlclfn 39043  LDualcld 39109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-0g 17380  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-sbg 18852  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-oppr 20257  df-lmod 20800  df-lfl 39044  df-ldual 39110
This theorem is referenced by:  ldualvsubcl  39142  lcfrlem2  41530
  Copyright terms: Public domain W3C validator