| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualvsub | Structured version Visualization version GIF version | ||
| Description: The value of vector subtraction in the dual of a vector space. (Contributed by NM, 27-Feb-2015.) |
| Ref | Expression |
|---|---|
| ldualvsub.r | ⊢ 𝑅 = (Scalar‘𝑊) |
| ldualvsub.n | ⊢ 𝑁 = (invg‘𝑅) |
| ldualvsub.u | ⊢ 1 = (1r‘𝑅) |
| ldualvsub.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| ldualvsub.d | ⊢ 𝐷 = (LDual‘𝑊) |
| ldualvsub.p | ⊢ + = (+g‘𝐷) |
| ldualvsub.t | ⊢ · = ( ·𝑠 ‘𝐷) |
| ldualvsub.m | ⊢ − = (-g‘𝐷) |
| ldualvsub.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| ldualvsub.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| ldualvsub.h | ⊢ (𝜑 → 𝐻 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| ldualvsub | ⊢ (𝜑 → (𝐺 − 𝐻) = (𝐺 + ((𝑁‘ 1 ) · 𝐻))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ldualvsub.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
| 2 | ldualvsub.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 3 | 1, 2 | lduallmod 39141 | . . 3 ⊢ (𝜑 → 𝐷 ∈ LMod) |
| 4 | ldualvsub.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 5 | eqid 2730 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 6 | ldualvsub.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 7 | 4, 1, 5, 2, 6 | ldualelvbase 39115 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (Base‘𝐷)) |
| 8 | ldualvsub.h | . . . 4 ⊢ (𝜑 → 𝐻 ∈ 𝐹) | |
| 9 | 4, 1, 5, 2, 8 | ldualelvbase 39115 | . . 3 ⊢ (𝜑 → 𝐻 ∈ (Base‘𝐷)) |
| 10 | ldualvsub.p | . . . 4 ⊢ + = (+g‘𝐷) | |
| 11 | ldualvsub.m | . . . 4 ⊢ − = (-g‘𝐷) | |
| 12 | eqid 2730 | . . . 4 ⊢ (Scalar‘𝐷) = (Scalar‘𝐷) | |
| 13 | ldualvsub.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝐷) | |
| 14 | eqid 2730 | . . . 4 ⊢ (invg‘(Scalar‘𝐷)) = (invg‘(Scalar‘𝐷)) | |
| 15 | eqid 2730 | . . . 4 ⊢ (1r‘(Scalar‘𝐷)) = (1r‘(Scalar‘𝐷)) | |
| 16 | 5, 10, 11, 12, 13, 14, 15 | lmodvsubval2 20829 | . . 3 ⊢ ((𝐷 ∈ LMod ∧ 𝐺 ∈ (Base‘𝐷) ∧ 𝐻 ∈ (Base‘𝐷)) → (𝐺 − 𝐻) = (𝐺 + (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻))) |
| 17 | 3, 7, 9, 16 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝐺 − 𝐻) = (𝐺 + (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻))) |
| 18 | eqid 2730 | . . . . . . 7 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
| 19 | ldualvsub.n | . . . . . . 7 ⊢ 𝑁 = (invg‘𝑅) | |
| 20 | 18, 19 | opprneg 20266 | . . . . . 6 ⊢ 𝑁 = (invg‘(oppr‘𝑅)) |
| 21 | ldualvsub.r | . . . . . . . 8 ⊢ 𝑅 = (Scalar‘𝑊) | |
| 22 | 21, 18, 1, 12, 2 | ldualsca 39120 | . . . . . . 7 ⊢ (𝜑 → (Scalar‘𝐷) = (oppr‘𝑅)) |
| 23 | 22 | fveq2d 6864 | . . . . . 6 ⊢ (𝜑 → (invg‘(Scalar‘𝐷)) = (invg‘(oppr‘𝑅))) |
| 24 | 20, 23 | eqtr4id 2784 | . . . . 5 ⊢ (𝜑 → 𝑁 = (invg‘(Scalar‘𝐷))) |
| 25 | ldualvsub.u | . . . . . . 7 ⊢ 1 = (1r‘𝑅) | |
| 26 | 18, 25 | oppr1 20265 | . . . . . 6 ⊢ 1 = (1r‘(oppr‘𝑅)) |
| 27 | 22 | fveq2d 6864 | . . . . . 6 ⊢ (𝜑 → (1r‘(Scalar‘𝐷)) = (1r‘(oppr‘𝑅))) |
| 28 | 26, 27 | eqtr4id 2784 | . . . . 5 ⊢ (𝜑 → 1 = (1r‘(Scalar‘𝐷))) |
| 29 | 24, 28 | fveq12d 6867 | . . . 4 ⊢ (𝜑 → (𝑁‘ 1 ) = ((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))) |
| 30 | 29 | oveq1d 7404 | . . 3 ⊢ (𝜑 → ((𝑁‘ 1 ) · 𝐻) = (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻)) |
| 31 | 30 | oveq2d 7405 | . 2 ⊢ (𝜑 → (𝐺 + ((𝑁‘ 1 ) · 𝐻)) = (𝐺 + (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻))) |
| 32 | 17, 31 | eqtr4d 2768 | 1 ⊢ (𝜑 → (𝐺 − 𝐻) = (𝐺 + ((𝑁‘ 1 ) · 𝐻))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 +gcplusg 17226 Scalarcsca 17229 ·𝑠 cvsca 17230 invgcminusg 18872 -gcsg 18873 1rcur 20096 opprcoppr 20251 LModclmod 20772 LFnlclfn 39045 LDualcld 39111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-of 7655 df-om 7845 df-1st 7970 df-2nd 7971 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-n0 12449 df-z 12536 df-uz 12800 df-fz 13475 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-0g 17410 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18874 df-minusg 18875 df-sbg 18876 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-oppr 20252 df-lmod 20774 df-lfl 39046 df-ldual 39112 |
| This theorem is referenced by: ldualvsubcl 39144 lcfrlem2 41532 |
| Copyright terms: Public domain | W3C validator |