Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualvsub | Structured version Visualization version GIF version |
Description: The value of vector subtraction in the dual of a vector space. (Contributed by NM, 27-Feb-2015.) |
Ref | Expression |
---|---|
ldualvsub.r | ⊢ 𝑅 = (Scalar‘𝑊) |
ldualvsub.n | ⊢ 𝑁 = (invg‘𝑅) |
ldualvsub.u | ⊢ 1 = (1r‘𝑅) |
ldualvsub.f | ⊢ 𝐹 = (LFnl‘𝑊) |
ldualvsub.d | ⊢ 𝐷 = (LDual‘𝑊) |
ldualvsub.p | ⊢ + = (+g‘𝐷) |
ldualvsub.t | ⊢ · = ( ·𝑠 ‘𝐷) |
ldualvsub.m | ⊢ − = (-g‘𝐷) |
ldualvsub.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
ldualvsub.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
ldualvsub.h | ⊢ (𝜑 → 𝐻 ∈ 𝐹) |
Ref | Expression |
---|---|
ldualvsub | ⊢ (𝜑 → (𝐺 − 𝐻) = (𝐺 + ((𝑁‘ 1 ) · 𝐻))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldualvsub.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
2 | ldualvsub.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
3 | 1, 2 | lduallmod 37428 | . . 3 ⊢ (𝜑 → 𝐷 ∈ LMod) |
4 | ldualvsub.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
5 | eqid 2736 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
6 | ldualvsub.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
7 | 4, 1, 5, 2, 6 | ldualelvbase 37402 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (Base‘𝐷)) |
8 | ldualvsub.h | . . . 4 ⊢ (𝜑 → 𝐻 ∈ 𝐹) | |
9 | 4, 1, 5, 2, 8 | ldualelvbase 37402 | . . 3 ⊢ (𝜑 → 𝐻 ∈ (Base‘𝐷)) |
10 | ldualvsub.p | . . . 4 ⊢ + = (+g‘𝐷) | |
11 | ldualvsub.m | . . . 4 ⊢ − = (-g‘𝐷) | |
12 | eqid 2736 | . . . 4 ⊢ (Scalar‘𝐷) = (Scalar‘𝐷) | |
13 | ldualvsub.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝐷) | |
14 | eqid 2736 | . . . 4 ⊢ (invg‘(Scalar‘𝐷)) = (invg‘(Scalar‘𝐷)) | |
15 | eqid 2736 | . . . 4 ⊢ (1r‘(Scalar‘𝐷)) = (1r‘(Scalar‘𝐷)) | |
16 | 5, 10, 11, 12, 13, 14, 15 | lmodvsubval2 20284 | . . 3 ⊢ ((𝐷 ∈ LMod ∧ 𝐺 ∈ (Base‘𝐷) ∧ 𝐻 ∈ (Base‘𝐷)) → (𝐺 − 𝐻) = (𝐺 + (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻))) |
17 | 3, 7, 9, 16 | syl3anc 1370 | . 2 ⊢ (𝜑 → (𝐺 − 𝐻) = (𝐺 + (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻))) |
18 | eqid 2736 | . . . . . . 7 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
19 | ldualvsub.n | . . . . . . 7 ⊢ 𝑁 = (invg‘𝑅) | |
20 | 18, 19 | opprneg 19972 | . . . . . 6 ⊢ 𝑁 = (invg‘(oppr‘𝑅)) |
21 | ldualvsub.r | . . . . . . . 8 ⊢ 𝑅 = (Scalar‘𝑊) | |
22 | 21, 18, 1, 12, 2 | ldualsca 37407 | . . . . . . 7 ⊢ (𝜑 → (Scalar‘𝐷) = (oppr‘𝑅)) |
23 | 22 | fveq2d 6829 | . . . . . 6 ⊢ (𝜑 → (invg‘(Scalar‘𝐷)) = (invg‘(oppr‘𝑅))) |
24 | 20, 23 | eqtr4id 2795 | . . . . 5 ⊢ (𝜑 → 𝑁 = (invg‘(Scalar‘𝐷))) |
25 | ldualvsub.u | . . . . . . 7 ⊢ 1 = (1r‘𝑅) | |
26 | 18, 25 | oppr1 19971 | . . . . . 6 ⊢ 1 = (1r‘(oppr‘𝑅)) |
27 | 22 | fveq2d 6829 | . . . . . 6 ⊢ (𝜑 → (1r‘(Scalar‘𝐷)) = (1r‘(oppr‘𝑅))) |
28 | 26, 27 | eqtr4id 2795 | . . . . 5 ⊢ (𝜑 → 1 = (1r‘(Scalar‘𝐷))) |
29 | 24, 28 | fveq12d 6832 | . . . 4 ⊢ (𝜑 → (𝑁‘ 1 ) = ((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))) |
30 | 29 | oveq1d 7352 | . . 3 ⊢ (𝜑 → ((𝑁‘ 1 ) · 𝐻) = (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻)) |
31 | 30 | oveq2d 7353 | . 2 ⊢ (𝜑 → (𝐺 + ((𝑁‘ 1 ) · 𝐻)) = (𝐺 + (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻))) |
32 | 17, 31 | eqtr4d 2779 | 1 ⊢ (𝜑 → (𝐺 − 𝐻) = (𝐺 + ((𝑁‘ 1 ) · 𝐻))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ‘cfv 6479 (class class class)co 7337 Basecbs 17009 +gcplusg 17059 Scalarcsca 17062 ·𝑠 cvsca 17063 invgcminusg 18674 -gcsg 18675 1rcur 19832 opprcoppr 19956 LModclmod 20229 LFnlclfn 37332 LDualcld 37398 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-of 7595 df-om 7781 df-1st 7899 df-2nd 7900 df-tpos 8112 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-map 8688 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-n0 12335 df-z 12421 df-uz 12684 df-fz 13341 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-plusg 17072 df-mulr 17073 df-sca 17075 df-vsca 17076 df-0g 17249 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-grp 18676 df-minusg 18677 df-sbg 18678 df-cmn 19483 df-abl 19484 df-mgp 19816 df-ur 19833 df-ring 19880 df-oppr 19957 df-lmod 20231 df-lfl 37333 df-ldual 37399 |
This theorem is referenced by: ldualvsubcl 37431 lcfrlem2 39819 |
Copyright terms: Public domain | W3C validator |