![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > zlmodzxzsubm | Structured version Visualization version GIF version |
Description: The subtraction of the ℤ-module ℤ × ℤ expressed as addition. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
Ref | Expression |
---|---|
zlmodzxz.z | ⊢ 𝑍 = (ℤring freeLMod {0, 1}) |
zlmodzxzsub.m | ⊢ − = (-g‘𝑍) |
Ref | Expression |
---|---|
zlmodzxzsubm | ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({〈0, 𝐴〉, 〈1, 𝐶〉} − {〈0, 𝐵〉, 〈1, 𝐷〉}) = ({〈0, 𝐴〉, 〈1, 𝐶〉} (+g‘𝑍)(-1( ·𝑠 ‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zlmodzxz.z | . . . . . 6 ⊢ 𝑍 = (ℤring freeLMod {0, 1}) | |
2 | 1 | zlmodzxzlmod 42993 | . . . . 5 ⊢ (𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) |
3 | 2 | simpli 478 | . . . 4 ⊢ 𝑍 ∈ LMod |
4 | 3 | a1i 11 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 𝑍 ∈ LMod) |
5 | 1 | zlmodzxzel 42994 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {〈0, 𝐴〉, 〈1, 𝐶〉} ∈ (Base‘𝑍)) |
6 | 5 | ad2ant2r 753 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {〈0, 𝐴〉, 〈1, 𝐶〉} ∈ (Base‘𝑍)) |
7 | 1 | zlmodzxzel 42994 | . . . 4 ⊢ ((𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ) → {〈0, 𝐵〉, 〈1, 𝐷〉} ∈ (Base‘𝑍)) |
8 | 7 | ad2ant2l 752 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {〈0, 𝐵〉, 〈1, 𝐷〉} ∈ (Base‘𝑍)) |
9 | eqid 2825 | . . . 4 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
10 | eqid 2825 | . . . 4 ⊢ (+g‘𝑍) = (+g‘𝑍) | |
11 | zlmodzxzsub.m | . . . 4 ⊢ − = (-g‘𝑍) | |
12 | 2 | simpri 481 | . . . 4 ⊢ ℤring = (Scalar‘𝑍) |
13 | eqid 2825 | . . . 4 ⊢ ( ·𝑠 ‘𝑍) = ( ·𝑠 ‘𝑍) | |
14 | eqid 2825 | . . . 4 ⊢ (invg‘ℤring) = (invg‘ℤring) | |
15 | zring1 20196 | . . . 4 ⊢ 1 = (1r‘ℤring) | |
16 | 9, 10, 11, 12, 13, 14, 15 | lmodvsubval2 19281 | . . 3 ⊢ ((𝑍 ∈ LMod ∧ {〈0, 𝐴〉, 〈1, 𝐶〉} ∈ (Base‘𝑍) ∧ {〈0, 𝐵〉, 〈1, 𝐷〉} ∈ (Base‘𝑍)) → ({〈0, 𝐴〉, 〈1, 𝐶〉} − {〈0, 𝐵〉, 〈1, 𝐷〉}) = ({〈0, 𝐴〉, 〈1, 𝐶〉} (+g‘𝑍)(((invg‘ℤring)‘1)( ·𝑠 ‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}))) |
17 | 4, 6, 8, 16 | syl3anc 1494 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({〈0, 𝐴〉, 〈1, 𝐶〉} − {〈0, 𝐵〉, 〈1, 𝐷〉}) = ({〈0, 𝐴〉, 〈1, 𝐶〉} (+g‘𝑍)(((invg‘ℤring)‘1)( ·𝑠 ‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}))) |
18 | 1z 11742 | . . . . . 6 ⊢ 1 ∈ ℤ | |
19 | zringinvg 20202 | . . . . . 6 ⊢ (1 ∈ ℤ → -1 = ((invg‘ℤring)‘1)) | |
20 | 18, 19 | mp1i 13 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → -1 = ((invg‘ℤring)‘1)) |
21 | 20 | eqcomd 2831 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((invg‘ℤring)‘1) = -1) |
22 | 21 | oveq1d 6925 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (((invg‘ℤring)‘1)( ·𝑠 ‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}) = (-1( ·𝑠 ‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉})) |
23 | 22 | oveq2d 6926 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({〈0, 𝐴〉, 〈1, 𝐶〉} (+g‘𝑍)(((invg‘ℤring)‘1)( ·𝑠 ‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉})) = ({〈0, 𝐴〉, 〈1, 𝐶〉} (+g‘𝑍)(-1( ·𝑠 ‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}))) |
24 | 17, 23 | eqtrd 2861 | 1 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({〈0, 𝐴〉, 〈1, 𝐶〉} − {〈0, 𝐵〉, 〈1, 𝐷〉}) = ({〈0, 𝐴〉, 〈1, 𝐶〉} (+g‘𝑍)(-1( ·𝑠 ‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 {cpr 4401 〈cop 4405 ‘cfv 6127 (class class class)co 6910 0cc0 10259 1c1 10260 -cneg 10593 ℤcz 11711 Basecbs 16229 +gcplusg 16312 Scalarcsca 16315 ·𝑠 cvsca 16316 invgcminusg 17784 -gcsg 17785 LModclmod 19226 ℤringzring 20185 freeLMod cfrlm 20460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 ax-addf 10338 ax-mulf 10339 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-1st 7433 df-2nd 7434 df-supp 7565 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-oadd 7835 df-er 8014 df-map 8129 df-ixp 8182 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-fsupp 8551 df-sup 8623 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-nn 11358 df-2 11421 df-3 11422 df-4 11423 df-5 11424 df-6 11425 df-7 11426 df-8 11427 df-9 11428 df-n0 11626 df-z 11712 df-dec 11829 df-uz 11976 df-fz 12627 df-struct 16231 df-ndx 16232 df-slot 16233 df-base 16235 df-sets 16236 df-ress 16237 df-plusg 16325 df-mulr 16326 df-starv 16327 df-sca 16328 df-vsca 16329 df-ip 16330 df-tset 16331 df-ple 16332 df-ds 16334 df-unif 16335 df-hom 16336 df-cco 16337 df-0g 16462 df-prds 16468 df-pws 16470 df-mgm 17602 df-sgrp 17644 df-mnd 17655 df-grp 17786 df-minusg 17787 df-sbg 17788 df-subg 17949 df-cmn 18555 df-mgp 18851 df-ur 18863 df-ring 18910 df-cring 18911 df-subrg 19141 df-lmod 19228 df-lss 19296 df-sra 19540 df-rgmod 19541 df-cnfld 20114 df-zring 20186 df-dsmm 20446 df-frlm 20461 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |