Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > zlmodzxzsubm | Structured version Visualization version GIF version |
Description: The subtraction of the ℤ-module ℤ × ℤ expressed as addition. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
Ref | Expression |
---|---|
zlmodzxz.z | ⊢ 𝑍 = (ℤring freeLMod {0, 1}) |
zlmodzxzsub.m | ⊢ − = (-g‘𝑍) |
Ref | Expression |
---|---|
zlmodzxzsubm | ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({〈0, 𝐴〉, 〈1, 𝐶〉} − {〈0, 𝐵〉, 〈1, 𝐷〉}) = ({〈0, 𝐴〉, 〈1, 𝐶〉} (+g‘𝑍)(-1( ·𝑠 ‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zlmodzxz.z | . . . . . 6 ⊢ 𝑍 = (ℤring freeLMod {0, 1}) | |
2 | 1 | zlmodzxzlmod 45578 | . . . . 5 ⊢ (𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) |
3 | 2 | simpli 483 | . . . 4 ⊢ 𝑍 ∈ LMod |
4 | 3 | a1i 11 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 𝑍 ∈ LMod) |
5 | 1 | zlmodzxzel 45579 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {〈0, 𝐴〉, 〈1, 𝐶〉} ∈ (Base‘𝑍)) |
6 | 5 | ad2ant2r 743 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {〈0, 𝐴〉, 〈1, 𝐶〉} ∈ (Base‘𝑍)) |
7 | 1 | zlmodzxzel 45579 | . . . 4 ⊢ ((𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ) → {〈0, 𝐵〉, 〈1, 𝐷〉} ∈ (Base‘𝑍)) |
8 | 7 | ad2ant2l 742 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {〈0, 𝐵〉, 〈1, 𝐷〉} ∈ (Base‘𝑍)) |
9 | eqid 2738 | . . . 4 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
10 | eqid 2738 | . . . 4 ⊢ (+g‘𝑍) = (+g‘𝑍) | |
11 | zlmodzxzsub.m | . . . 4 ⊢ − = (-g‘𝑍) | |
12 | 2 | simpri 485 | . . . 4 ⊢ ℤring = (Scalar‘𝑍) |
13 | eqid 2738 | . . . 4 ⊢ ( ·𝑠 ‘𝑍) = ( ·𝑠 ‘𝑍) | |
14 | eqid 2738 | . . . 4 ⊢ (invg‘ℤring) = (invg‘ℤring) | |
15 | zring1 20593 | . . . 4 ⊢ 1 = (1r‘ℤring) | |
16 | 9, 10, 11, 12, 13, 14, 15 | lmodvsubval2 20093 | . . 3 ⊢ ((𝑍 ∈ LMod ∧ {〈0, 𝐴〉, 〈1, 𝐶〉} ∈ (Base‘𝑍) ∧ {〈0, 𝐵〉, 〈1, 𝐷〉} ∈ (Base‘𝑍)) → ({〈0, 𝐴〉, 〈1, 𝐶〉} − {〈0, 𝐵〉, 〈1, 𝐷〉}) = ({〈0, 𝐴〉, 〈1, 𝐶〉} (+g‘𝑍)(((invg‘ℤring)‘1)( ·𝑠 ‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}))) |
17 | 4, 6, 8, 16 | syl3anc 1369 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({〈0, 𝐴〉, 〈1, 𝐶〉} − {〈0, 𝐵〉, 〈1, 𝐷〉}) = ({〈0, 𝐴〉, 〈1, 𝐶〉} (+g‘𝑍)(((invg‘ℤring)‘1)( ·𝑠 ‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}))) |
18 | 1z 12280 | . . . . . 6 ⊢ 1 ∈ ℤ | |
19 | zringinvg 20599 | . . . . . 6 ⊢ (1 ∈ ℤ → -1 = ((invg‘ℤring)‘1)) | |
20 | 18, 19 | mp1i 13 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → -1 = ((invg‘ℤring)‘1)) |
21 | 20 | eqcomd 2744 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((invg‘ℤring)‘1) = -1) |
22 | 21 | oveq1d 7270 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (((invg‘ℤring)‘1)( ·𝑠 ‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}) = (-1( ·𝑠 ‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉})) |
23 | 22 | oveq2d 7271 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({〈0, 𝐴〉, 〈1, 𝐶〉} (+g‘𝑍)(((invg‘ℤring)‘1)( ·𝑠 ‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉})) = ({〈0, 𝐴〉, 〈1, 𝐶〉} (+g‘𝑍)(-1( ·𝑠 ‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}))) |
24 | 17, 23 | eqtrd 2778 | 1 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({〈0, 𝐴〉, 〈1, 𝐶〉} − {〈0, 𝐵〉, 〈1, 𝐷〉}) = ({〈0, 𝐴〉, 〈1, 𝐶〉} (+g‘𝑍)(-1( ·𝑠 ‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cpr 4560 〈cop 4564 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 -cneg 11136 ℤcz 12249 Basecbs 16840 +gcplusg 16888 Scalarcsca 16891 ·𝑠 cvsca 16892 invgcminusg 18493 -gcsg 18494 LModclmod 20038 ℤringzring 20582 freeLMod cfrlm 20863 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-0g 17069 df-prds 17075 df-pws 17077 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-cmn 19303 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-subrg 19937 df-lmod 20040 df-lss 20109 df-sra 20349 df-rgmod 20350 df-cnfld 20511 df-zring 20583 df-dsmm 20849 df-frlm 20864 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |