| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zlmodzxzsubm | Structured version Visualization version GIF version | ||
| Description: The subtraction of the ℤ-module ℤ × ℤ expressed as addition. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
| Ref | Expression |
|---|---|
| zlmodzxz.z | ⊢ 𝑍 = (ℤring freeLMod {0, 1}) |
| zlmodzxzsub.m | ⊢ − = (-g‘𝑍) |
| Ref | Expression |
|---|---|
| zlmodzxzsubm | ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({〈0, 𝐴〉, 〈1, 𝐶〉} − {〈0, 𝐵〉, 〈1, 𝐷〉}) = ({〈0, 𝐴〉, 〈1, 𝐶〉} (+g‘𝑍)(-1( ·𝑠 ‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zlmodzxz.z | . . . . . 6 ⊢ 𝑍 = (ℤring freeLMod {0, 1}) | |
| 2 | 1 | zlmodzxzlmod 48364 | . . . . 5 ⊢ (𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) |
| 3 | 2 | simpli 483 | . . . 4 ⊢ 𝑍 ∈ LMod |
| 4 | 3 | a1i 11 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 𝑍 ∈ LMod) |
| 5 | 1 | zlmodzxzel 48365 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {〈0, 𝐴〉, 〈1, 𝐶〉} ∈ (Base‘𝑍)) |
| 6 | 5 | ad2ant2r 747 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {〈0, 𝐴〉, 〈1, 𝐶〉} ∈ (Base‘𝑍)) |
| 7 | 1 | zlmodzxzel 48365 | . . . 4 ⊢ ((𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ) → {〈0, 𝐵〉, 〈1, 𝐷〉} ∈ (Base‘𝑍)) |
| 8 | 7 | ad2ant2l 746 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {〈0, 𝐵〉, 〈1, 𝐷〉} ∈ (Base‘𝑍)) |
| 9 | eqid 2730 | . . . 4 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
| 10 | eqid 2730 | . . . 4 ⊢ (+g‘𝑍) = (+g‘𝑍) | |
| 11 | zlmodzxzsub.m | . . . 4 ⊢ − = (-g‘𝑍) | |
| 12 | 2 | simpri 485 | . . . 4 ⊢ ℤring = (Scalar‘𝑍) |
| 13 | eqid 2730 | . . . 4 ⊢ ( ·𝑠 ‘𝑍) = ( ·𝑠 ‘𝑍) | |
| 14 | eqid 2730 | . . . 4 ⊢ (invg‘ℤring) = (invg‘ℤring) | |
| 15 | zring1 21389 | . . . 4 ⊢ 1 = (1r‘ℤring) | |
| 16 | 9, 10, 11, 12, 13, 14, 15 | lmodvsubval2 20843 | . . 3 ⊢ ((𝑍 ∈ LMod ∧ {〈0, 𝐴〉, 〈1, 𝐶〉} ∈ (Base‘𝑍) ∧ {〈0, 𝐵〉, 〈1, 𝐷〉} ∈ (Base‘𝑍)) → ({〈0, 𝐴〉, 〈1, 𝐶〉} − {〈0, 𝐵〉, 〈1, 𝐷〉}) = ({〈0, 𝐴〉, 〈1, 𝐶〉} (+g‘𝑍)(((invg‘ℤring)‘1)( ·𝑠 ‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}))) |
| 17 | 4, 6, 8, 16 | syl3anc 1373 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({〈0, 𝐴〉, 〈1, 𝐶〉} − {〈0, 𝐵〉, 〈1, 𝐷〉}) = ({〈0, 𝐴〉, 〈1, 𝐶〉} (+g‘𝑍)(((invg‘ℤring)‘1)( ·𝑠 ‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}))) |
| 18 | 1z 12494 | . . . . . 6 ⊢ 1 ∈ ℤ | |
| 19 | zringinvg 21395 | . . . . . 6 ⊢ (1 ∈ ℤ → -1 = ((invg‘ℤring)‘1)) | |
| 20 | 18, 19 | mp1i 13 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → -1 = ((invg‘ℤring)‘1)) |
| 21 | 20 | eqcomd 2736 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((invg‘ℤring)‘1) = -1) |
| 22 | 21 | oveq1d 7356 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (((invg‘ℤring)‘1)( ·𝑠 ‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}) = (-1( ·𝑠 ‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉})) |
| 23 | 22 | oveq2d 7357 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({〈0, 𝐴〉, 〈1, 𝐶〉} (+g‘𝑍)(((invg‘ℤring)‘1)( ·𝑠 ‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉})) = ({〈0, 𝐴〉, 〈1, 𝐶〉} (+g‘𝑍)(-1( ·𝑠 ‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}))) |
| 24 | 17, 23 | eqtrd 2765 | 1 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({〈0, 𝐴〉, 〈1, 𝐶〉} − {〈0, 𝐵〉, 〈1, 𝐷〉}) = ({〈0, 𝐴〉, 〈1, 𝐶〉} (+g‘𝑍)(-1( ·𝑠 ‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 {cpr 4576 〈cop 4580 ‘cfv 6477 (class class class)co 7341 0cc0 10998 1c1 10999 -cneg 11337 ℤcz 12460 Basecbs 17112 +gcplusg 17153 Scalarcsca 17156 ·𝑠 cvsca 17157 invgcminusg 18839 -gcsg 18840 LModclmod 20786 ℤringczring 21376 freeLMod cfrlm 21676 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-addf 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-sup 9321 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-dec 12581 df-uz 12725 df-fz 13400 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-starv 17168 df-sca 17169 df-vsca 17170 df-ip 17171 df-tset 17172 df-ple 17173 df-ds 17175 df-unif 17176 df-hom 17177 df-cco 17178 df-0g 17337 df-prds 17343 df-pws 17345 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-grp 18841 df-minusg 18842 df-sbg 18843 df-subg 19028 df-cmn 19687 df-abl 19688 df-mgp 20052 df-rng 20064 df-ur 20093 df-ring 20146 df-cring 20147 df-subrng 20454 df-subrg 20478 df-lmod 20788 df-lss 20858 df-sra 21100 df-rgmod 21101 df-cnfld 21285 df-zring 21377 df-dsmm 21662 df-frlm 21677 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |