Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > zlmodzxzsubm | Structured version Visualization version GIF version |
Description: The subtraction of the ℤ-module ℤ × ℤ expressed as addition. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
Ref | Expression |
---|---|
zlmodzxz.z | ⊢ 𝑍 = (ℤring freeLMod {0, 1}) |
zlmodzxzsub.m | ⊢ − = (-g‘𝑍) |
Ref | Expression |
---|---|
zlmodzxzsubm | ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({〈0, 𝐴〉, 〈1, 𝐶〉} − {〈0, 𝐵〉, 〈1, 𝐷〉}) = ({〈0, 𝐴〉, 〈1, 𝐶〉} (+g‘𝑍)(-1( ·𝑠 ‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zlmodzxz.z | . . . . . 6 ⊢ 𝑍 = (ℤring freeLMod {0, 1}) | |
2 | 1 | zlmodzxzlmod 46106 | . . . . 5 ⊢ (𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) |
3 | 2 | simpli 485 | . . . 4 ⊢ 𝑍 ∈ LMod |
4 | 3 | a1i 11 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 𝑍 ∈ LMod) |
5 | 1 | zlmodzxzel 46107 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {〈0, 𝐴〉, 〈1, 𝐶〉} ∈ (Base‘𝑍)) |
6 | 5 | ad2ant2r 745 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {〈0, 𝐴〉, 〈1, 𝐶〉} ∈ (Base‘𝑍)) |
7 | 1 | zlmodzxzel 46107 | . . . 4 ⊢ ((𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ) → {〈0, 𝐵〉, 〈1, 𝐷〉} ∈ (Base‘𝑍)) |
8 | 7 | ad2ant2l 744 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {〈0, 𝐵〉, 〈1, 𝐷〉} ∈ (Base‘𝑍)) |
9 | eqid 2737 | . . . 4 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
10 | eqid 2737 | . . . 4 ⊢ (+g‘𝑍) = (+g‘𝑍) | |
11 | zlmodzxzsub.m | . . . 4 ⊢ − = (-g‘𝑍) | |
12 | 2 | simpri 487 | . . . 4 ⊢ ℤring = (Scalar‘𝑍) |
13 | eqid 2737 | . . . 4 ⊢ ( ·𝑠 ‘𝑍) = ( ·𝑠 ‘𝑍) | |
14 | eqid 2737 | . . . 4 ⊢ (invg‘ℤring) = (invg‘ℤring) | |
15 | zring1 20787 | . . . 4 ⊢ 1 = (1r‘ℤring) | |
16 | 9, 10, 11, 12, 13, 14, 15 | lmodvsubval2 20284 | . . 3 ⊢ ((𝑍 ∈ LMod ∧ {〈0, 𝐴〉, 〈1, 𝐶〉} ∈ (Base‘𝑍) ∧ {〈0, 𝐵〉, 〈1, 𝐷〉} ∈ (Base‘𝑍)) → ({〈0, 𝐴〉, 〈1, 𝐶〉} − {〈0, 𝐵〉, 〈1, 𝐷〉}) = ({〈0, 𝐴〉, 〈1, 𝐶〉} (+g‘𝑍)(((invg‘ℤring)‘1)( ·𝑠 ‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}))) |
17 | 4, 6, 8, 16 | syl3anc 1371 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({〈0, 𝐴〉, 〈1, 𝐶〉} − {〈0, 𝐵〉, 〈1, 𝐷〉}) = ({〈0, 𝐴〉, 〈1, 𝐶〉} (+g‘𝑍)(((invg‘ℤring)‘1)( ·𝑠 ‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}))) |
18 | 1z 12456 | . . . . . 6 ⊢ 1 ∈ ℤ | |
19 | zringinvg 20793 | . . . . . 6 ⊢ (1 ∈ ℤ → -1 = ((invg‘ℤring)‘1)) | |
20 | 18, 19 | mp1i 13 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → -1 = ((invg‘ℤring)‘1)) |
21 | 20 | eqcomd 2743 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((invg‘ℤring)‘1) = -1) |
22 | 21 | oveq1d 7357 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (((invg‘ℤring)‘1)( ·𝑠 ‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}) = (-1( ·𝑠 ‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉})) |
23 | 22 | oveq2d 7358 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({〈0, 𝐴〉, 〈1, 𝐶〉} (+g‘𝑍)(((invg‘ℤring)‘1)( ·𝑠 ‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉})) = ({〈0, 𝐴〉, 〈1, 𝐶〉} (+g‘𝑍)(-1( ·𝑠 ‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}))) |
24 | 17, 23 | eqtrd 2777 | 1 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({〈0, 𝐴〉, 〈1, 𝐶〉} − {〈0, 𝐵〉, 〈1, 𝐷〉}) = ({〈0, 𝐴〉, 〈1, 𝐶〉} (+g‘𝑍)(-1( ·𝑠 ‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 {cpr 4580 〈cop 4584 ‘cfv 6484 (class class class)co 7342 0cc0 10977 1c1 10978 -cneg 11312 ℤcz 12425 Basecbs 17010 +gcplusg 17060 Scalarcsca 17063 ·𝑠 cvsca 17064 invgcminusg 18675 -gcsg 18676 LModclmod 20229 ℤringczring 20776 freeLMod cfrlm 21059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 ax-addf 11056 ax-mulf 11057 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-tp 4583 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-1st 7904 df-2nd 7905 df-supp 8053 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-er 8574 df-map 8693 df-ixp 8762 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-fsupp 9232 df-sup 9304 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-nn 12080 df-2 12142 df-3 12143 df-4 12144 df-5 12145 df-6 12146 df-7 12147 df-8 12148 df-9 12149 df-n0 12340 df-z 12426 df-dec 12544 df-uz 12689 df-fz 13346 df-struct 16946 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-ress 17040 df-plusg 17073 df-mulr 17074 df-starv 17075 df-sca 17076 df-vsca 17077 df-ip 17078 df-tset 17079 df-ple 17080 df-ds 17082 df-unif 17083 df-hom 17084 df-cco 17085 df-0g 17250 df-prds 17256 df-pws 17258 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-grp 18677 df-minusg 18678 df-sbg 18679 df-subg 18849 df-cmn 19484 df-mgp 19816 df-ur 19833 df-ring 19880 df-cring 19881 df-subrg 20127 df-lmod 20231 df-lss 20300 df-sra 20540 df-rgmod 20541 df-cnfld 20704 df-zring 20777 df-dsmm 21045 df-frlm 21060 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |