| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatcv1 | Structured version Visualization version GIF version | ||
| Description: Two atoms covering the zero subspace are equal. (atcv1 32324 analog.) (Contributed by NM, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| lsatcv1.o | ⊢ 0 = (0g‘𝑊) |
| lsatcv1.p | ⊢ ⊕ = (LSSum‘𝑊) |
| lsatcv1.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lsatcv1.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| lsatcv1.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
| lsatcv1.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lsatcv1.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lsatcv1.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
| lsatcv1.r | ⊢ (𝜑 → 𝑅 ∈ 𝐴) |
| lsatcv1.l | ⊢ (𝜑 → 𝑈𝐶(𝑄 ⊕ 𝑅)) |
| Ref | Expression |
|---|---|
| lsatcv1 | ⊢ (𝜑 → (𝑈 = { 0 } ↔ 𝑄 = 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsatcv1.l | . . . 4 ⊢ (𝜑 → 𝑈𝐶(𝑄 ⊕ 𝑅)) | |
| 2 | breq1 5095 | . . . 4 ⊢ (𝑈 = { 0 } → (𝑈𝐶(𝑄 ⊕ 𝑅) ↔ { 0 }𝐶(𝑄 ⊕ 𝑅))) | |
| 3 | 1, 2 | syl5ibcom 245 | . . 3 ⊢ (𝜑 → (𝑈 = { 0 } → { 0 }𝐶(𝑄 ⊕ 𝑅))) |
| 4 | lsatcv1.o | . . . 4 ⊢ 0 = (0g‘𝑊) | |
| 5 | lsatcv1.p | . . . 4 ⊢ ⊕ = (LSSum‘𝑊) | |
| 6 | lsatcv1.a | . . . 4 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 7 | lsatcv1.c | . . . 4 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
| 8 | lsatcv1.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 9 | lsatcv1.q | . . . 4 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
| 10 | lsatcv1.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝐴) | |
| 11 | 4, 5, 6, 7, 8, 9, 10 | lsatcv0eq 39026 | . . 3 ⊢ (𝜑 → ({ 0 }𝐶(𝑄 ⊕ 𝑅) ↔ 𝑄 = 𝑅)) |
| 12 | 3, 11 | sylibd 239 | . 2 ⊢ (𝜑 → (𝑈 = { 0 } → 𝑄 = 𝑅)) |
| 13 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑄 = 𝑅) → 𝑈𝐶(𝑄 ⊕ 𝑅)) |
| 14 | lsatcv1.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 15 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑄 = 𝑅) → 𝑊 ∈ LVec) |
| 16 | lsatcv1.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 17 | 16 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑄 = 𝑅) → 𝑈 ∈ 𝑆) |
| 18 | oveq1 7356 | . . . . . . 7 ⊢ (𝑄 = 𝑅 → (𝑄 ⊕ 𝑅) = (𝑅 ⊕ 𝑅)) | |
| 19 | lveclmod 21010 | . . . . . . . . . 10 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 20 | 8, 19 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 21 | 14, 6, 20, 10 | lsatlssel 38976 | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ 𝑆) |
| 22 | 14 | lsssubg 20860 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝑆) → 𝑅 ∈ (SubGrp‘𝑊)) |
| 23 | 20, 21, 22 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ (SubGrp‘𝑊)) |
| 24 | 5 | lsmidm 19542 | . . . . . . . 8 ⊢ (𝑅 ∈ (SubGrp‘𝑊) → (𝑅 ⊕ 𝑅) = 𝑅) |
| 25 | 23, 24 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑅 ⊕ 𝑅) = 𝑅) |
| 26 | 18, 25 | sylan9eqr 2786 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑄 = 𝑅) → (𝑄 ⊕ 𝑅) = 𝑅) |
| 27 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑄 = 𝑅) → 𝑅 ∈ 𝐴) |
| 28 | 26, 27 | eqeltrd 2828 | . . . . 5 ⊢ ((𝜑 ∧ 𝑄 = 𝑅) → (𝑄 ⊕ 𝑅) ∈ 𝐴) |
| 29 | 4, 14, 6, 7, 15, 17, 28 | lsatcveq0 39011 | . . . 4 ⊢ ((𝜑 ∧ 𝑄 = 𝑅) → (𝑈𝐶(𝑄 ⊕ 𝑅) ↔ 𝑈 = { 0 })) |
| 30 | 13, 29 | mpbid 232 | . . 3 ⊢ ((𝜑 ∧ 𝑄 = 𝑅) → 𝑈 = { 0 }) |
| 31 | 30 | ex 412 | . 2 ⊢ (𝜑 → (𝑄 = 𝑅 → 𝑈 = { 0 })) |
| 32 | 12, 31 | impbid 212 | 1 ⊢ (𝜑 → (𝑈 = { 0 } ↔ 𝑄 = 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4577 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 0gc0g 17343 SubGrpcsubg 18999 LSSumclsm 19513 LModclmod 20763 LSubSpclss 20834 LVecclvec 21006 LSAtomsclsa 38953 ⋖L clcv 38997 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-0g 17345 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-subg 19002 df-cntz 19196 df-oppg 19225 df-lsm 19515 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-drng 20616 df-lmod 20765 df-lss 20835 df-lsp 20875 df-lvec 21007 df-lsatoms 38955 df-lcv 38998 |
| This theorem is referenced by: lsatcvat2 39030 |
| Copyright terms: Public domain | W3C validator |