| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatcv1 | Structured version Visualization version GIF version | ||
| Description: Two atoms covering the zero subspace are equal. (atcv1 32309 analog.) (Contributed by NM, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| lsatcv1.o | ⊢ 0 = (0g‘𝑊) |
| lsatcv1.p | ⊢ ⊕ = (LSSum‘𝑊) |
| lsatcv1.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lsatcv1.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| lsatcv1.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
| lsatcv1.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lsatcv1.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lsatcv1.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
| lsatcv1.r | ⊢ (𝜑 → 𝑅 ∈ 𝐴) |
| lsatcv1.l | ⊢ (𝜑 → 𝑈𝐶(𝑄 ⊕ 𝑅)) |
| Ref | Expression |
|---|---|
| lsatcv1 | ⊢ (𝜑 → (𝑈 = { 0 } ↔ 𝑄 = 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsatcv1.l | . . . 4 ⊢ (𝜑 → 𝑈𝐶(𝑄 ⊕ 𝑅)) | |
| 2 | breq1 5110 | . . . 4 ⊢ (𝑈 = { 0 } → (𝑈𝐶(𝑄 ⊕ 𝑅) ↔ { 0 }𝐶(𝑄 ⊕ 𝑅))) | |
| 3 | 1, 2 | syl5ibcom 245 | . . 3 ⊢ (𝜑 → (𝑈 = { 0 } → { 0 }𝐶(𝑄 ⊕ 𝑅))) |
| 4 | lsatcv1.o | . . . 4 ⊢ 0 = (0g‘𝑊) | |
| 5 | lsatcv1.p | . . . 4 ⊢ ⊕ = (LSSum‘𝑊) | |
| 6 | lsatcv1.a | . . . 4 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 7 | lsatcv1.c | . . . 4 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
| 8 | lsatcv1.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 9 | lsatcv1.q | . . . 4 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
| 10 | lsatcv1.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝐴) | |
| 11 | 4, 5, 6, 7, 8, 9, 10 | lsatcv0eq 39040 | . . 3 ⊢ (𝜑 → ({ 0 }𝐶(𝑄 ⊕ 𝑅) ↔ 𝑄 = 𝑅)) |
| 12 | 3, 11 | sylibd 239 | . 2 ⊢ (𝜑 → (𝑈 = { 0 } → 𝑄 = 𝑅)) |
| 13 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑄 = 𝑅) → 𝑈𝐶(𝑄 ⊕ 𝑅)) |
| 14 | lsatcv1.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 15 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑄 = 𝑅) → 𝑊 ∈ LVec) |
| 16 | lsatcv1.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 17 | 16 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑄 = 𝑅) → 𝑈 ∈ 𝑆) |
| 18 | oveq1 7394 | . . . . . . 7 ⊢ (𝑄 = 𝑅 → (𝑄 ⊕ 𝑅) = (𝑅 ⊕ 𝑅)) | |
| 19 | lveclmod 21013 | . . . . . . . . . 10 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 20 | 8, 19 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 21 | 14, 6, 20, 10 | lsatlssel 38990 | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ 𝑆) |
| 22 | 14 | lsssubg 20863 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝑆) → 𝑅 ∈ (SubGrp‘𝑊)) |
| 23 | 20, 21, 22 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ (SubGrp‘𝑊)) |
| 24 | 5 | lsmidm 19593 | . . . . . . . 8 ⊢ (𝑅 ∈ (SubGrp‘𝑊) → (𝑅 ⊕ 𝑅) = 𝑅) |
| 25 | 23, 24 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑅 ⊕ 𝑅) = 𝑅) |
| 26 | 18, 25 | sylan9eqr 2786 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑄 = 𝑅) → (𝑄 ⊕ 𝑅) = 𝑅) |
| 27 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑄 = 𝑅) → 𝑅 ∈ 𝐴) |
| 28 | 26, 27 | eqeltrd 2828 | . . . . 5 ⊢ ((𝜑 ∧ 𝑄 = 𝑅) → (𝑄 ⊕ 𝑅) ∈ 𝐴) |
| 29 | 4, 14, 6, 7, 15, 17, 28 | lsatcveq0 39025 | . . . 4 ⊢ ((𝜑 ∧ 𝑄 = 𝑅) → (𝑈𝐶(𝑄 ⊕ 𝑅) ↔ 𝑈 = { 0 })) |
| 30 | 13, 29 | mpbid 232 | . . 3 ⊢ ((𝜑 ∧ 𝑄 = 𝑅) → 𝑈 = { 0 }) |
| 31 | 30 | ex 412 | . 2 ⊢ (𝜑 → (𝑄 = 𝑅 → 𝑈 = { 0 })) |
| 32 | 12, 31 | impbid 212 | 1 ⊢ (𝜑 → (𝑈 = { 0 } ↔ 𝑄 = 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4589 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 0gc0g 17402 SubGrpcsubg 19052 LSSumclsm 19564 LModclmod 20766 LSubSpclss 20837 LVecclvec 21009 LSAtomsclsa 38967 ⋖L clcv 39011 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-0g 17404 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-cntz 19249 df-oppg 19278 df-lsm 19566 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-drng 20640 df-lmod 20768 df-lss 20838 df-lsp 20878 df-lvec 21010 df-lsatoms 38969 df-lcv 39012 |
| This theorem is referenced by: lsatcvat2 39044 |
| Copyright terms: Public domain | W3C validator |