![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mendvsca | Structured version Visualization version GIF version |
Description: A specific scalar multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015.) |
Ref | Expression |
---|---|
mendvscafval.a | ⊢ 𝐴 = (MEndo‘𝑀) |
mendvscafval.v | ⊢ · = ( ·𝑠 ‘𝑀) |
mendvscafval.b | ⊢ 𝐵 = (Base‘𝐴) |
mendvscafval.s | ⊢ 𝑆 = (Scalar‘𝑀) |
mendvscafval.k | ⊢ 𝐾 = (Base‘𝑆) |
mendvscafval.e | ⊢ 𝐸 = (Base‘𝑀) |
mendvsca.w | ⊢ ∙ = ( ·𝑠 ‘𝐴) |
Ref | Expression |
---|---|
mendvsca | ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∙ 𝑌) = ((𝐸 × {𝑋}) ∘f · 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4640 | . . . 4 ⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) | |
2 | 1 | xpeq2d 5718 | . . 3 ⊢ (𝑥 = 𝑋 → (𝐸 × {𝑥}) = (𝐸 × {𝑋})) |
3 | id 22 | . . 3 ⊢ (𝑦 = 𝑌 → 𝑦 = 𝑌) | |
4 | 2, 3 | oveqan12d 7449 | . 2 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝐸 × {𝑥}) ∘f · 𝑦) = ((𝐸 × {𝑋}) ∘f · 𝑌)) |
5 | mendvsca.w | . . 3 ⊢ ∙ = ( ·𝑠 ‘𝐴) | |
6 | mendvscafval.a | . . . 4 ⊢ 𝐴 = (MEndo‘𝑀) | |
7 | mendvscafval.v | . . . 4 ⊢ · = ( ·𝑠 ‘𝑀) | |
8 | mendvscafval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
9 | mendvscafval.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑀) | |
10 | mendvscafval.k | . . . 4 ⊢ 𝐾 = (Base‘𝑆) | |
11 | mendvscafval.e | . . . 4 ⊢ 𝐸 = (Base‘𝑀) | |
12 | 6, 7, 8, 9, 10, 11 | mendvscafval 43174 | . . 3 ⊢ ( ·𝑠 ‘𝐴) = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)) |
13 | 5, 12 | eqtri 2762 | . 2 ⊢ ∙ = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)) |
14 | ovex 7463 | . 2 ⊢ ((𝐸 × {𝑋}) ∘f · 𝑌) ∈ V | |
15 | 4, 13, 14 | ovmpoa 7587 | 1 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∙ 𝑌) = ((𝐸 × {𝑋}) ∘f · 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 {csn 4630 × cxp 5686 ‘cfv 6562 (class class class)co 7430 ∈ cmpo 7432 ∘f cof 7694 Basecbs 17244 Scalarcsca 17300 ·𝑠 cvsca 17301 MEndocmend 43159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-of 7696 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-n0 12524 df-z 12611 df-uz 12876 df-fz 13544 df-struct 17180 df-slot 17215 df-ndx 17227 df-base 17245 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-lmhm 21038 df-mend 43160 |
This theorem is referenced by: mendlmod 43177 mendassa 43178 |
Copyright terms: Public domain | W3C validator |