![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mendvsca | Structured version Visualization version GIF version |
Description: A specific scalar multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015.) |
Ref | Expression |
---|---|
mendvscafval.a | ⊢ 𝐴 = (MEndo‘𝑀) |
mendvscafval.v | ⊢ · = ( ·𝑠 ‘𝑀) |
mendvscafval.b | ⊢ 𝐵 = (Base‘𝐴) |
mendvscafval.s | ⊢ 𝑆 = (Scalar‘𝑀) |
mendvscafval.k | ⊢ 𝐾 = (Base‘𝑆) |
mendvscafval.e | ⊢ 𝐸 = (Base‘𝑀) |
mendvsca.w | ⊢ ∙ = ( ·𝑠 ‘𝐴) |
Ref | Expression |
---|---|
mendvsca | ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∙ 𝑌) = ((𝐸 × {𝑋}) ∘f · 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4596 | . . . 4 ⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) | |
2 | 1 | xpeq2d 5663 | . . 3 ⊢ (𝑥 = 𝑋 → (𝐸 × {𝑥}) = (𝐸 × {𝑋})) |
3 | id 22 | . . 3 ⊢ (𝑦 = 𝑌 → 𝑦 = 𝑌) | |
4 | 2, 3 | oveqan12d 7376 | . 2 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝐸 × {𝑥}) ∘f · 𝑦) = ((𝐸 × {𝑋}) ∘f · 𝑌)) |
5 | mendvsca.w | . . 3 ⊢ ∙ = ( ·𝑠 ‘𝐴) | |
6 | mendvscafval.a | . . . 4 ⊢ 𝐴 = (MEndo‘𝑀) | |
7 | mendvscafval.v | . . . 4 ⊢ · = ( ·𝑠 ‘𝑀) | |
8 | mendvscafval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
9 | mendvscafval.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑀) | |
10 | mendvscafval.k | . . . 4 ⊢ 𝐾 = (Base‘𝑆) | |
11 | mendvscafval.e | . . . 4 ⊢ 𝐸 = (Base‘𝑀) | |
12 | 6, 7, 8, 9, 10, 11 | mendvscafval 41503 | . . 3 ⊢ ( ·𝑠 ‘𝐴) = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)) |
13 | 5, 12 | eqtri 2764 | . 2 ⊢ ∙ = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)) |
14 | ovex 7390 | . 2 ⊢ ((𝐸 × {𝑋}) ∘f · 𝑌) ∈ V | |
15 | 4, 13, 14 | ovmpoa 7510 | 1 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∙ 𝑌) = ((𝐸 × {𝑋}) ∘f · 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {csn 4586 × cxp 5631 ‘cfv 6496 (class class class)co 7357 ∈ cmpo 7359 ∘f cof 7615 Basecbs 17083 Scalarcsca 17136 ·𝑠 cvsca 17137 MEndocmend 41488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-n0 12414 df-z 12500 df-uz 12764 df-fz 13425 df-struct 17019 df-slot 17054 df-ndx 17066 df-base 17084 df-plusg 17146 df-mulr 17147 df-sca 17149 df-vsca 17150 df-lmhm 20483 df-mend 41489 |
This theorem is referenced by: mendlmod 41506 mendassa 41507 |
Copyright terms: Public domain | W3C validator |