![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mendvsca | Structured version Visualization version GIF version |
Description: A specific scalar multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015.) |
Ref | Expression |
---|---|
mendvscafval.a | β’ π΄ = (MEndoβπ) |
mendvscafval.v | β’ Β· = ( Β·π βπ) |
mendvscafval.b | β’ π΅ = (Baseβπ΄) |
mendvscafval.s | β’ π = (Scalarβπ) |
mendvscafval.k | β’ πΎ = (Baseβπ) |
mendvscafval.e | β’ πΈ = (Baseβπ) |
mendvsca.w | β’ β = ( Β·π βπ΄) |
Ref | Expression |
---|---|
mendvsca | β’ ((π β πΎ β§ π β π΅) β (π β π) = ((πΈ Γ {π}) βf Β· π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4642 | . . . 4 β’ (π₯ = π β {π₯} = {π}) | |
2 | 1 | xpeq2d 5712 | . . 3 β’ (π₯ = π β (πΈ Γ {π₯}) = (πΈ Γ {π})) |
3 | id 22 | . . 3 β’ (π¦ = π β π¦ = π) | |
4 | 2, 3 | oveqan12d 7445 | . 2 β’ ((π₯ = π β§ π¦ = π) β ((πΈ Γ {π₯}) βf Β· π¦) = ((πΈ Γ {π}) βf Β· π)) |
5 | mendvsca.w | . . 3 β’ β = ( Β·π βπ΄) | |
6 | mendvscafval.a | . . . 4 β’ π΄ = (MEndoβπ) | |
7 | mendvscafval.v | . . . 4 β’ Β· = ( Β·π βπ) | |
8 | mendvscafval.b | . . . 4 β’ π΅ = (Baseβπ΄) | |
9 | mendvscafval.s | . . . 4 β’ π = (Scalarβπ) | |
10 | mendvscafval.k | . . . 4 β’ πΎ = (Baseβπ) | |
11 | mendvscafval.e | . . . 4 β’ πΈ = (Baseβπ) | |
12 | 6, 7, 8, 9, 10, 11 | mendvscafval 42663 | . . 3 β’ ( Β·π βπ΄) = (π₯ β πΎ, π¦ β π΅ β¦ ((πΈ Γ {π₯}) βf Β· π¦)) |
13 | 5, 12 | eqtri 2756 | . 2 β’ β = (π₯ β πΎ, π¦ β π΅ β¦ ((πΈ Γ {π₯}) βf Β· π¦)) |
14 | ovex 7459 | . 2 β’ ((πΈ Γ {π}) βf Β· π) β V | |
15 | 4, 13, 14 | ovmpoa 7583 | 1 β’ ((π β πΎ β§ π β π΅) β (π β π) = ((πΈ Γ {π}) βf Β· π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 {csn 4632 Γ cxp 5680 βcfv 6553 (class class class)co 7426 β cmpo 7428 βf cof 7690 Basecbs 17189 Scalarcsca 17245 Β·π cvsca 17246 MEndocmend 42648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-of 7692 df-om 7879 df-1st 8001 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-er 8733 df-en 8973 df-dom 8974 df-sdom 8975 df-fin 8976 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-nn 12253 df-2 12315 df-3 12316 df-4 12317 df-5 12318 df-6 12319 df-n0 12513 df-z 12599 df-uz 12863 df-fz 13527 df-struct 17125 df-slot 17160 df-ndx 17172 df-base 17190 df-plusg 17255 df-mulr 17256 df-sca 17258 df-vsca 17259 df-lmhm 20921 df-mend 42649 |
This theorem is referenced by: mendlmod 42666 mendassa 42667 |
Copyright terms: Public domain | W3C validator |