| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mendvsca | Structured version Visualization version GIF version | ||
| Description: A specific scalar multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| mendvscafval.a | ⊢ 𝐴 = (MEndo‘𝑀) |
| mendvscafval.v | ⊢ · = ( ·𝑠 ‘𝑀) |
| mendvscafval.b | ⊢ 𝐵 = (Base‘𝐴) |
| mendvscafval.s | ⊢ 𝑆 = (Scalar‘𝑀) |
| mendvscafval.k | ⊢ 𝐾 = (Base‘𝑆) |
| mendvscafval.e | ⊢ 𝐸 = (Base‘𝑀) |
| mendvsca.w | ⊢ ∙ = ( ·𝑠 ‘𝐴) |
| Ref | Expression |
|---|---|
| mendvsca | ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∙ 𝑌) = ((𝐸 × {𝑋}) ∘f · 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4601 | . . . 4 ⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) | |
| 2 | 1 | xpeq2d 5670 | . . 3 ⊢ (𝑥 = 𝑋 → (𝐸 × {𝑥}) = (𝐸 × {𝑋})) |
| 3 | id 22 | . . 3 ⊢ (𝑦 = 𝑌 → 𝑦 = 𝑌) | |
| 4 | 2, 3 | oveqan12d 7408 | . 2 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝐸 × {𝑥}) ∘f · 𝑦) = ((𝐸 × {𝑋}) ∘f · 𝑌)) |
| 5 | mendvsca.w | . . 3 ⊢ ∙ = ( ·𝑠 ‘𝐴) | |
| 6 | mendvscafval.a | . . . 4 ⊢ 𝐴 = (MEndo‘𝑀) | |
| 7 | mendvscafval.v | . . . 4 ⊢ · = ( ·𝑠 ‘𝑀) | |
| 8 | mendvscafval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
| 9 | mendvscafval.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑀) | |
| 10 | mendvscafval.k | . . . 4 ⊢ 𝐾 = (Base‘𝑆) | |
| 11 | mendvscafval.e | . . . 4 ⊢ 𝐸 = (Base‘𝑀) | |
| 12 | 6, 7, 8, 9, 10, 11 | mendvscafval 43168 | . . 3 ⊢ ( ·𝑠 ‘𝐴) = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)) |
| 13 | 5, 12 | eqtri 2753 | . 2 ⊢ ∙ = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)) |
| 14 | ovex 7422 | . 2 ⊢ ((𝐸 × {𝑋}) ∘f · 𝑌) ∈ V | |
| 15 | 4, 13, 14 | ovmpoa 7546 | 1 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∙ 𝑌) = ((𝐸 × {𝑋}) ∘f · 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4591 × cxp 5638 ‘cfv 6513 (class class class)co 7389 ∈ cmpo 7391 ∘f cof 7653 Basecbs 17185 Scalarcsca 17229 ·𝑠 cvsca 17230 MEndocmend 43153 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-of 7655 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-n0 12449 df-z 12536 df-uz 12800 df-fz 13475 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17186 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-lmhm 20935 df-mend 43154 |
| This theorem is referenced by: mendlmod 43171 mendassa 43172 |
| Copyright terms: Public domain | W3C validator |