Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendvsca Structured version   Visualization version   GIF version

Theorem mendvsca 43162
Description: A specific scalar multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015.)
Hypotheses
Ref Expression
mendvscafval.a 𝐴 = (MEndo‘𝑀)
mendvscafval.v · = ( ·𝑠𝑀)
mendvscafval.b 𝐵 = (Base‘𝐴)
mendvscafval.s 𝑆 = (Scalar‘𝑀)
mendvscafval.k 𝐾 = (Base‘𝑆)
mendvscafval.e 𝐸 = (Base‘𝑀)
mendvsca.w = ( ·𝑠𝐴)
Assertion
Ref Expression
mendvsca ((𝑋𝐾𝑌𝐵) → (𝑋 𝑌) = ((𝐸 × {𝑋}) ∘f · 𝑌))

Proof of Theorem mendvsca
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 4616 . . . 4 (𝑥 = 𝑋 → {𝑥} = {𝑋})
21xpeq2d 5695 . . 3 (𝑥 = 𝑋 → (𝐸 × {𝑥}) = (𝐸 × {𝑋}))
3 id 22 . . 3 (𝑦 = 𝑌𝑦 = 𝑌)
42, 3oveqan12d 7432 . 2 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝐸 × {𝑥}) ∘f · 𝑦) = ((𝐸 × {𝑋}) ∘f · 𝑌))
5 mendvsca.w . . 3 = ( ·𝑠𝐴)
6 mendvscafval.a . . . 4 𝐴 = (MEndo‘𝑀)
7 mendvscafval.v . . . 4 · = ( ·𝑠𝑀)
8 mendvscafval.b . . . 4 𝐵 = (Base‘𝐴)
9 mendvscafval.s . . . 4 𝑆 = (Scalar‘𝑀)
10 mendvscafval.k . . . 4 𝐾 = (Base‘𝑆)
11 mendvscafval.e . . . 4 𝐸 = (Base‘𝑀)
126, 7, 8, 9, 10, 11mendvscafval 43161 . . 3 ( ·𝑠𝐴) = (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦))
135, 12eqtri 2757 . 2 = (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦))
14 ovex 7446 . 2 ((𝐸 × {𝑋}) ∘f · 𝑌) ∈ V
154, 13, 14ovmpoa 7570 1 ((𝑋𝐾𝑌𝐵) → (𝑋 𝑌) = ((𝐸 × {𝑋}) ∘f · 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {csn 4606   × cxp 5663  cfv 6541  (class class class)co 7413  cmpo 7415  f cof 7677  Basecbs 17229  Scalarcsca 17276   ·𝑠 cvsca 17277  MEndocmend 43146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-n0 12510  df-z 12597  df-uz 12861  df-fz 13530  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17230  df-plusg 17286  df-mulr 17287  df-sca 17289  df-vsca 17290  df-lmhm 20989  df-mend 43147
This theorem is referenced by:  mendlmod  43164  mendassa  43165
  Copyright terms: Public domain W3C validator