| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mendvsca | Structured version Visualization version GIF version | ||
| Description: A specific scalar multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| mendvscafval.a | ⊢ 𝐴 = (MEndo‘𝑀) |
| mendvscafval.v | ⊢ · = ( ·𝑠 ‘𝑀) |
| mendvscafval.b | ⊢ 𝐵 = (Base‘𝐴) |
| mendvscafval.s | ⊢ 𝑆 = (Scalar‘𝑀) |
| mendvscafval.k | ⊢ 𝐾 = (Base‘𝑆) |
| mendvscafval.e | ⊢ 𝐸 = (Base‘𝑀) |
| mendvsca.w | ⊢ ∙ = ( ·𝑠 ‘𝐴) |
| Ref | Expression |
|---|---|
| mendvsca | ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∙ 𝑌) = ((𝐸 × {𝑋}) ∘f · 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4616 | . . . 4 ⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) | |
| 2 | 1 | xpeq2d 5695 | . . 3 ⊢ (𝑥 = 𝑋 → (𝐸 × {𝑥}) = (𝐸 × {𝑋})) |
| 3 | id 22 | . . 3 ⊢ (𝑦 = 𝑌 → 𝑦 = 𝑌) | |
| 4 | 2, 3 | oveqan12d 7432 | . 2 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝐸 × {𝑥}) ∘f · 𝑦) = ((𝐸 × {𝑋}) ∘f · 𝑌)) |
| 5 | mendvsca.w | . . 3 ⊢ ∙ = ( ·𝑠 ‘𝐴) | |
| 6 | mendvscafval.a | . . . 4 ⊢ 𝐴 = (MEndo‘𝑀) | |
| 7 | mendvscafval.v | . . . 4 ⊢ · = ( ·𝑠 ‘𝑀) | |
| 8 | mendvscafval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
| 9 | mendvscafval.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑀) | |
| 10 | mendvscafval.k | . . . 4 ⊢ 𝐾 = (Base‘𝑆) | |
| 11 | mendvscafval.e | . . . 4 ⊢ 𝐸 = (Base‘𝑀) | |
| 12 | 6, 7, 8, 9, 10, 11 | mendvscafval 43161 | . . 3 ⊢ ( ·𝑠 ‘𝐴) = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)) |
| 13 | 5, 12 | eqtri 2757 | . 2 ⊢ ∙ = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)) |
| 14 | ovex 7446 | . 2 ⊢ ((𝐸 × {𝑋}) ∘f · 𝑌) ∈ V | |
| 15 | 4, 13, 14 | ovmpoa 7570 | 1 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∙ 𝑌) = ((𝐸 × {𝑋}) ∘f · 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {csn 4606 × cxp 5663 ‘cfv 6541 (class class class)co 7413 ∈ cmpo 7415 ∘f cof 7677 Basecbs 17229 Scalarcsca 17276 ·𝑠 cvsca 17277 MEndocmend 43146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-n0 12510 df-z 12597 df-uz 12861 df-fz 13530 df-struct 17166 df-slot 17201 df-ndx 17213 df-base 17230 df-plusg 17286 df-mulr 17287 df-sca 17289 df-vsca 17290 df-lmhm 20989 df-mend 43147 |
| This theorem is referenced by: mendlmod 43164 mendassa 43165 |
| Copyright terms: Public domain | W3C validator |