Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpgedg2ov Structured version   Visualization version   GIF version

Theorem gpgedg2ov 48030
Description: The edges of the generalized Petersen graph GPG(N,K) between two outside vertices. (Contributed by AV, 15-Nov-2025.)
Hypotheses
Ref Expression
gpgedgiov.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
gpgedgiov.i 𝐼 = (0..^𝑁)
gpgedgiov.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpgedgiov.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
gpgedg2ov (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → (({⟨0, ((𝑌 − 1) mod 𝑁)⟩, ⟨0, 𝑋⟩} ∈ 𝐸 ∧ {⟨0, 𝑋⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩} ∈ 𝐸) ↔ 𝑋 = 𝑌))

Proof of Theorem gpgedg2ov
StepHypRef Expression
1 prcom 4692 . . . . . 6 {⟨0, ((𝑌 − 1) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨0, 𝑋⟩, ⟨0, ((𝑌 − 1) mod 𝑁)⟩}
21eleq1i 2819 . . . . 5 ({⟨0, ((𝑌 − 1) mod 𝑁)⟩, ⟨0, 𝑋⟩} ∈ 𝐸 ↔ {⟨0, 𝑋⟩, ⟨0, ((𝑌 − 1) mod 𝑁)⟩} ∈ 𝐸)
3 uzuzle35 12822 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘5) → 𝑁 ∈ (ℤ‘3))
43anim1i 615 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) → (𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽))
54adantr 480 . . . . . . . 8 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → (𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽))
65adantr 480 . . . . . . 7 ((((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ {⟨0, 𝑋⟩, ⟨0, ((𝑌 − 1) mod 𝑁)⟩} ∈ 𝐸) → (𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽))
7 c0ex 11144 . . . . . . . . . . . . 13 0 ∈ V
87a1i 11 . . . . . . . . . . . 12 (𝑌𝐼 → 0 ∈ V)
98anim1i 615 . . . . . . . . . . 11 ((𝑌𝐼𝑋𝐼) → (0 ∈ V ∧ 𝑋𝐼))
109ancoms 458 . . . . . . . . . 10 ((𝑋𝐼𝑌𝐼) → (0 ∈ V ∧ 𝑋𝐼))
11 op1stg 7959 . . . . . . . . . 10 ((0 ∈ V ∧ 𝑋𝐼) → (1st ‘⟨0, 𝑋⟩) = 0)
1210, 11syl 17 . . . . . . . . 9 ((𝑋𝐼𝑌𝐼) → (1st ‘⟨0, 𝑋⟩) = 0)
1312adantl 481 . . . . . . . 8 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → (1st ‘⟨0, 𝑋⟩) = 0)
1413adantr 480 . . . . . . 7 ((((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ {⟨0, 𝑋⟩, ⟨0, ((𝑌 − 1) mod 𝑁)⟩} ∈ 𝐸) → (1st ‘⟨0, 𝑋⟩) = 0)
15 simpr 484 . . . . . . 7 ((((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ {⟨0, 𝑋⟩, ⟨0, ((𝑌 − 1) mod 𝑁)⟩} ∈ 𝐸) → {⟨0, 𝑋⟩, ⟨0, ((𝑌 − 1) mod 𝑁)⟩} ∈ 𝐸)
16 gpgedgiov.j . . . . . . . 8 𝐽 = (1..^(⌈‘(𝑁 / 2)))
17 gpgedgiov.g . . . . . . . 8 𝐺 = (𝑁 gPetersenGr 𝐾)
18 eqid 2729 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
19 gpgedgiov.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
2016, 17, 18, 19gpgvtxedg0 48027 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st ‘⟨0, 𝑋⟩) = 0 ∧ {⟨0, 𝑋⟩, ⟨0, ((𝑌 − 1) mod 𝑁)⟩} ∈ 𝐸) → (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩))
216, 14, 15, 20syl3anc 1373 . . . . . 6 ((((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ {⟨0, 𝑋⟩, ⟨0, ((𝑌 − 1) mod 𝑁)⟩} ∈ 𝐸) → (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩))
2221ex 412 . . . . 5 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → ({⟨0, 𝑋⟩, ⟨0, ((𝑌 − 1) mod 𝑁)⟩} ∈ 𝐸 → (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩)))
232, 22biimtrid 242 . . . 4 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → ({⟨0, ((𝑌 − 1) mod 𝑁)⟩, ⟨0, 𝑋⟩} ∈ 𝐸 → (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩)))
245adantr 480 . . . . . . . 8 ((((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ {⟨0, 𝑋⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩} ∈ 𝐸) → (𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽))
2513adantr 480 . . . . . . . 8 ((((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ {⟨0, 𝑋⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩} ∈ 𝐸) → (1st ‘⟨0, 𝑋⟩) = 0)
26 simpr 484 . . . . . . . 8 ((((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ {⟨0, 𝑋⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩} ∈ 𝐸) → {⟨0, 𝑋⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩} ∈ 𝐸)
2716, 17, 18, 19gpgvtxedg0 48027 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (1st ‘⟨0, 𝑋⟩) = 0 ∧ {⟨0, 𝑋⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩} ∈ 𝐸) → (⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ∨ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ∨ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩))
2824, 25, 26, 27syl3anc 1373 . . . . . . 7 ((((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ {⟨0, 𝑋⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩} ∈ 𝐸) → (⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ∨ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ∨ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩))
2928ex 412 . . . . . 6 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → ({⟨0, 𝑋⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩} ∈ 𝐸 → (⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ∨ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ∨ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩)))
30 ovex 7402 . . . . . . . . . . . . 13 ((𝑌 + 1) mod 𝑁) ∈ V
317, 30opth 5431 . . . . . . . . . . . 12 (⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ ↔ (0 = 0 ∧ ((𝑌 + 1) mod 𝑁) = ((𝑋 + 1) mod 𝑁)))
323adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) → 𝑁 ∈ (ℤ‘3))
3332adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → 𝑁 ∈ (ℤ‘3))
34 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → (𝑋𝐼𝑌𝐼))
3534ancomd 461 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → (𝑌𝐼𝑋𝐼))
36 1zzd 12540 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → 1 ∈ ℤ)
37 gpgedgiov.i . . . . . . . . . . . . . . . . . 18 𝐼 = (0..^𝑁)
3837modaddid 13848 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘3) ∧ (𝑌𝐼𝑋𝐼) ∧ 1 ∈ ℤ) → (((𝑌 + 1) mod 𝑁) = ((𝑋 + 1) mod 𝑁) ↔ 𝑌 = 𝑋))
3933, 35, 36, 38syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → (((𝑌 + 1) mod 𝑁) = ((𝑋 + 1) mod 𝑁) ↔ 𝑌 = 𝑋))
4039biimpa 476 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ ((𝑌 + 1) mod 𝑁) = ((𝑋 + 1) mod 𝑁)) → 𝑌 = 𝑋)
4140eqcomd 2735 . . . . . . . . . . . . . 14 ((((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ ((𝑌 + 1) mod 𝑁) = ((𝑋 + 1) mod 𝑁)) → 𝑋 = 𝑌)
4241ex 412 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → (((𝑌 + 1) mod 𝑁) = ((𝑋 + 1) mod 𝑁) → 𝑋 = 𝑌))
4342adantld 490 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → ((0 = 0 ∧ ((𝑌 + 1) mod 𝑁) = ((𝑋 + 1) mod 𝑁)) → 𝑋 = 𝑌))
4431, 43biimtrid 242 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → (⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ → 𝑋 = 𝑌))
4544imp 406 . . . . . . . . . 10 ((((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩) → 𝑋 = 𝑌)
4645a1d 25 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩) → ((⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩) → 𝑋 = 𝑌))
4746ex 412 . . . . . . . 8 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → (⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ → ((⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩) → 𝑋 = 𝑌)))
487, 30opth 5431 . . . . . . . . . . . 12 (⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩ ↔ (0 = 1 ∧ ((𝑌 + 1) mod 𝑁) = 𝑋))
49 0ne1 12233 . . . . . . . . . . . . . . 15 0 ≠ 1
50 eqneqall 2936 . . . . . . . . . . . . . . 15 (0 = 1 → (0 ≠ 1 → (((𝑌 + 1) mod 𝑁) = 𝑋 → (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ → 𝑋 = 𝑌))))
5149, 50mpi 20 . . . . . . . . . . . . . 14 (0 = 1 → (((𝑌 + 1) mod 𝑁) = 𝑋 → (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ → 𝑋 = 𝑌)))
5251imp 406 . . . . . . . . . . . . 13 ((0 = 1 ∧ ((𝑌 + 1) mod 𝑁) = 𝑋) → (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ → 𝑋 = 𝑌))
5352a1i 11 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → ((0 = 1 ∧ ((𝑌 + 1) mod 𝑁) = 𝑋) → (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ → 𝑋 = 𝑌)))
5448, 53biimtrid 242 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → (⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩ → (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ → 𝑋 = 𝑌)))
5554imp 406 . . . . . . . . . 10 ((((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩) → (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ → 𝑋 = 𝑌))
56 eqeq2 2741 . . . . . . . . . . . . 13 (⟨1, 𝑋⟩ = ⟨0, ((𝑌 + 1) mod 𝑁)⟩ → (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩ ↔ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑌 + 1) mod 𝑁)⟩))
5756eqcoms 2737 . . . . . . . . . . . 12 (⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩ → (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩ ↔ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑌 + 1) mod 𝑁)⟩))
5857adantl 481 . . . . . . . . . . 11 ((((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩) → (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩ ↔ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑌 + 1) mod 𝑁)⟩))
59 ovex 7402 . . . . . . . . . . . . . 14 ((𝑌 − 1) mod 𝑁) ∈ V
607, 59opth 5431 . . . . . . . . . . . . 13 (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑌 + 1) mod 𝑁)⟩ ↔ (0 = 0 ∧ ((𝑌 − 1) mod 𝑁) = ((𝑌 + 1) mod 𝑁)))
61 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑋𝐼𝑌𝐼) → 𝑌𝐼)
6237modm1nep1 47339 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘3) ∧ 𝑌𝐼) → ((𝑌 − 1) mod 𝑁) ≠ ((𝑌 + 1) mod 𝑁))
6332, 61, 62syl2an 596 . . . . . . . . . . . . . . 15 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → ((𝑌 − 1) mod 𝑁) ≠ ((𝑌 + 1) mod 𝑁))
64 eqneqall 2936 . . . . . . . . . . . . . . . 16 (((𝑌 − 1) mod 𝑁) = ((𝑌 + 1) mod 𝑁) → (((𝑌 − 1) mod 𝑁) ≠ ((𝑌 + 1) mod 𝑁) → 𝑋 = 𝑌))
6564com12 32 . . . . . . . . . . . . . . 15 (((𝑌 − 1) mod 𝑁) ≠ ((𝑌 + 1) mod 𝑁) → (((𝑌 − 1) mod 𝑁) = ((𝑌 + 1) mod 𝑁) → 𝑋 = 𝑌))
6663, 65syl 17 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → (((𝑌 − 1) mod 𝑁) = ((𝑌 + 1) mod 𝑁) → 𝑋 = 𝑌))
6766adantld 490 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → ((0 = 0 ∧ ((𝑌 − 1) mod 𝑁) = ((𝑌 + 1) mod 𝑁)) → 𝑋 = 𝑌))
6860, 67biimtrid 242 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑌 + 1) mod 𝑁)⟩ → 𝑋 = 𝑌))
6968adantr 480 . . . . . . . . . . 11 ((((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩) → (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑌 + 1) mod 𝑁)⟩ → 𝑋 = 𝑌))
7058, 69sylbid 240 . . . . . . . . . 10 ((((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩) → (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩ → 𝑋 = 𝑌))
7149orci 865 . . . . . . . . . . . . . 14 (0 ≠ 1 ∨ ((𝑌 + 1) mod 𝑁) ≠ 𝑋)
727, 30opthne 5437 . . . . . . . . . . . . . 14 (⟨0, ((𝑌 + 1) mod 𝑁)⟩ ≠ ⟨1, 𝑋⟩ ↔ (0 ≠ 1 ∨ ((𝑌 + 1) mod 𝑁) ≠ 𝑋))
7371, 72mpbir 231 . . . . . . . . . . . . 13 ⟨0, ((𝑌 + 1) mod 𝑁)⟩ ≠ ⟨1, 𝑋
7473a1i 11 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → ⟨0, ((𝑌 + 1) mod 𝑁)⟩ ≠ ⟨1, 𝑋⟩)
75 eqneqall 2936 . . . . . . . . . . . . 13 (⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩ → (⟨0, ((𝑌 + 1) mod 𝑁)⟩ ≠ ⟨1, 𝑋⟩ → (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩ → 𝑋 = 𝑌)))
7675com12 32 . . . . . . . . . . . 12 (⟨0, ((𝑌 + 1) mod 𝑁)⟩ ≠ ⟨1, 𝑋⟩ → (⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩ → (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩ → 𝑋 = 𝑌)))
7774, 76syl 17 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → (⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩ → (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩ → 𝑋 = 𝑌)))
7877imp 406 . . . . . . . . . 10 ((((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩) → (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩ → 𝑋 = 𝑌))
7955, 70, 783jaod 1431 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩) → ((⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩) → 𝑋 = 𝑌))
8079ex 412 . . . . . . . 8 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → (⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩ → ((⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩) → 𝑋 = 𝑌)))
817, 30opth 5431 . . . . . . . . . . . 12 (⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩ ↔ (0 = 0 ∧ ((𝑌 + 1) mod 𝑁) = ((𝑋 − 1) mod 𝑁)))
827, 59opth 5431 . . . . . . . . . . . . . . 15 (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ ↔ (0 = 0 ∧ ((𝑌 − 1) mod 𝑁) = ((𝑋 + 1) mod 𝑁)))
83 simpll 766 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → 𝑁 ∈ (ℤ‘5))
84 simprl 770 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → 𝑋𝐼)
85 simprr 772 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → 𝑌𝐼)
8637modm1p1ne 47344 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘5) ∧ 𝑋𝐼𝑌𝐼) → (((𝑌 − 1) mod 𝑁) = ((𝑋 + 1) mod 𝑁) → ((𝑌 + 1) mod 𝑁) ≠ ((𝑋 − 1) mod 𝑁)))
8783, 84, 85, 86syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → (((𝑌 − 1) mod 𝑁) = ((𝑋 + 1) mod 𝑁) → ((𝑌 + 1) mod 𝑁) ≠ ((𝑋 − 1) mod 𝑁)))
88 eqneqall 2936 . . . . . . . . . . . . . . . . . . 19 (((𝑌 + 1) mod 𝑁) = ((𝑋 − 1) mod 𝑁) → (((𝑌 + 1) mod 𝑁) ≠ ((𝑋 − 1) mod 𝑁) → 𝑋 = 𝑌))
8988com12 32 . . . . . . . . . . . . . . . . . 18 (((𝑌 + 1) mod 𝑁) ≠ ((𝑋 − 1) mod 𝑁) → (((𝑌 + 1) mod 𝑁) = ((𝑋 − 1) mod 𝑁) → 𝑋 = 𝑌))
9089a1i 11 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → (((𝑌 + 1) mod 𝑁) ≠ ((𝑋 − 1) mod 𝑁) → (((𝑌 + 1) mod 𝑁) = ((𝑋 − 1) mod 𝑁) → 𝑋 = 𝑌)))
9187, 90syld 47 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → (((𝑌 − 1) mod 𝑁) = ((𝑋 + 1) mod 𝑁) → (((𝑌 + 1) mod 𝑁) = ((𝑋 − 1) mod 𝑁) → 𝑋 = 𝑌)))
9291adantld 490 . . . . . . . . . . . . . . 15 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → ((0 = 0 ∧ ((𝑌 − 1) mod 𝑁) = ((𝑋 + 1) mod 𝑁)) → (((𝑌 + 1) mod 𝑁) = ((𝑋 − 1) mod 𝑁) → 𝑋 = 𝑌)))
9382, 92biimtrid 242 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ → (((𝑌 + 1) mod 𝑁) = ((𝑋 − 1) mod 𝑁) → 𝑋 = 𝑌)))
9493com23 86 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → (((𝑌 + 1) mod 𝑁) = ((𝑋 − 1) mod 𝑁) → (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ → 𝑋 = 𝑌)))
9594adantld 490 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → ((0 = 0 ∧ ((𝑌 + 1) mod 𝑁) = ((𝑋 − 1) mod 𝑁)) → (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ → 𝑋 = 𝑌)))
9681, 95biimtrid 242 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → (⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩ → (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ → 𝑋 = 𝑌)))
9796imp 406 . . . . . . . . . 10 ((((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩) → (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ → 𝑋 = 𝑌))
9849orci 865 . . . . . . . . . . . . 13 (0 ≠ 1 ∨ ((𝑌 − 1) mod 𝑁) ≠ 𝑋)
997, 59opthne 5437 . . . . . . . . . . . . 13 (⟨0, ((𝑌 − 1) mod 𝑁)⟩ ≠ ⟨1, 𝑋⟩ ↔ (0 ≠ 1 ∨ ((𝑌 − 1) mod 𝑁) ≠ 𝑋))
10098, 99mpbir 231 . . . . . . . . . . . 12 ⟨0, ((𝑌 − 1) mod 𝑁)⟩ ≠ ⟨1, 𝑋
101 eqneqall 2936 . . . . . . . . . . . 12 (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩ → (⟨0, ((𝑌 − 1) mod 𝑁)⟩ ≠ ⟨1, 𝑋⟩ → 𝑋 = 𝑌))
102100, 101mpi 20 . . . . . . . . . . 11 (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩ → 𝑋 = 𝑌)
103102a1i 11 . . . . . . . . . 10 ((((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩) → (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩ → 𝑋 = 𝑌))
104 eqeq2 2741 . . . . . . . . . . . . 13 (⟨0, ((𝑋 − 1) mod 𝑁)⟩ = ⟨0, ((𝑌 + 1) mod 𝑁)⟩ → (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩ ↔ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑌 + 1) mod 𝑁)⟩))
105104eqcoms 2737 . . . . . . . . . . . 12 (⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩ → (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩ ↔ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑌 + 1) mod 𝑁)⟩))
106105adantl 481 . . . . . . . . . . 11 ((((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩) → (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩ ↔ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑌 + 1) mod 𝑁)⟩))
10768adantr 480 . . . . . . . . . . 11 ((((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩) → (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑌 + 1) mod 𝑁)⟩ → 𝑋 = 𝑌))
108106, 107sylbid 240 . . . . . . . . . 10 ((((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩) → (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩ → 𝑋 = 𝑌))
10997, 103, 1083jaod 1431 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) ∧ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩) → ((⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩) → 𝑋 = 𝑌))
110109ex 412 . . . . . . . 8 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → (⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩ → ((⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩) → 𝑋 = 𝑌)))
11147, 80, 1103jaod 1431 . . . . . . 7 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → ((⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ ∨ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩ ∨ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩) → ((⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩) → 𝑋 = 𝑌)))
112 op2ndg 7960 . . . . . . . . . . 11 ((0 ∈ V ∧ 𝑋𝐼) → (2nd ‘⟨0, 𝑋⟩) = 𝑋)
1137, 112mpan 690 . . . . . . . . . 10 (𝑋𝐼 → (2nd ‘⟨0, 𝑋⟩) = 𝑋)
114113adantr 480 . . . . . . . . 9 ((𝑋𝐼𝑌𝐼) → (2nd ‘⟨0, 𝑋⟩) = 𝑋)
115114adantl 481 . . . . . . . 8 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → (2nd ‘⟨0, 𝑋⟩) = 𝑋)
116 oveq1 7376 . . . . . . . . . . . . 13 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → ((2nd ‘⟨0, 𝑋⟩) + 1) = (𝑋 + 1))
117116oveq1d 7384 . . . . . . . . . . . 12 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁) = ((𝑋 + 1) mod 𝑁))
118117opeq2d 4840 . . . . . . . . . . 11 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩)
119118eqeq2d 2740 . . . . . . . . . 10 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → (⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ↔ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩))
120 opeq2 4834 . . . . . . . . . . 11 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ = ⟨1, 𝑋⟩)
121120eqeq2d 2740 . . . . . . . . . 10 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → (⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ↔ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩))
122 oveq1 7376 . . . . . . . . . . . . 13 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → ((2nd ‘⟨0, 𝑋⟩) − 1) = (𝑋 − 1))
123122oveq1d 7384 . . . . . . . . . . . 12 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁) = ((𝑋 − 1) mod 𝑁))
124123opeq2d 4840 . . . . . . . . . . 11 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩)
125124eqeq2d 2740 . . . . . . . . . 10 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → (⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩ ↔ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩))
126119, 121, 1253orbi123d 1437 . . . . . . . . 9 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → ((⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ∨ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ∨ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩) ↔ (⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ ∨ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩ ∨ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩)))
127118eqeq2d 2740 . . . . . . . . . . 11 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ↔ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩))
128120eqeq2d 2740 . . . . . . . . . . 11 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ↔ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩))
129124eqeq2d 2740 . . . . . . . . . . 11 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩ ↔ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩))
130127, 128, 1293orbi123d 1437 . . . . . . . . . 10 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → ((⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩) ↔ (⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩)))
131130imbi1d 341 . . . . . . . . 9 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → (((⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩) → 𝑋 = 𝑌) ↔ ((⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩) → 𝑋 = 𝑌)))
132126, 131imbi12d 344 . . . . . . . 8 ((2nd ‘⟨0, 𝑋⟩) = 𝑋 → (((⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ∨ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ∨ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩) → ((⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩) → 𝑋 = 𝑌)) ↔ ((⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ ∨ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩ ∨ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩) → ((⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩) → 𝑋 = 𝑌))))
133115, 132syl 17 . . . . . . 7 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → (((⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ∨ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ∨ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩) → ((⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩) → 𝑋 = 𝑌)) ↔ ((⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ ∨ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩ ∨ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩) → ((⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 + 1) mod 𝑁)⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨1, 𝑋⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, ((𝑋 − 1) mod 𝑁)⟩) → 𝑋 = 𝑌))))
134111, 133mpbird 257 . . . . . 6 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → ((⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ∨ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ∨ ⟨0, ((𝑌 + 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩) → ((⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩) → 𝑋 = 𝑌)))
13529, 134syld 47 . . . . 5 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → ({⟨0, 𝑋⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩} ∈ 𝐸 → ((⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩) → 𝑋 = 𝑌)))
136135com23 86 . . . 4 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → ((⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) + 1) mod 𝑁)⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨1, (2nd ‘⟨0, 𝑋⟩)⟩ ∨ ⟨0, ((𝑌 − 1) mod 𝑁)⟩ = ⟨0, (((2nd ‘⟨0, 𝑋⟩) − 1) mod 𝑁)⟩) → ({⟨0, 𝑋⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩} ∈ 𝐸𝑋 = 𝑌)))
13723, 136syld 47 . . 3 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → ({⟨0, ((𝑌 − 1) mod 𝑁)⟩, ⟨0, 𝑋⟩} ∈ 𝐸 → ({⟨0, 𝑋⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩} ∈ 𝐸𝑋 = 𝑌)))
138137impd 410 . 2 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → (({⟨0, ((𝑌 − 1) mod 𝑁)⟩, ⟨0, 𝑋⟩} ∈ 𝐸 ∧ {⟨0, 𝑋⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩} ∈ 𝐸) → 𝑋 = 𝑌))
139 eqid 2729 . . . . . . . . 9 0 = 0
140139orci 865 . . . . . . . 8 (0 = 0 ∨ 0 = 1)
14161, 140jctil 519 . . . . . . 7 ((𝑋𝐼𝑌𝐼) → ((0 = 0 ∨ 0 = 1) ∧ 𝑌𝐼))
142141adantl 481 . . . . . 6 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → ((0 = 0 ∨ 0 = 1) ∧ 𝑌𝐼))
14337, 16, 17, 18opgpgvtx 48019 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (⟨0, 𝑌⟩ ∈ (Vtx‘𝐺) ↔ ((0 = 0 ∨ 0 = 1) ∧ 𝑌𝐼)))
1444, 143syl 17 . . . . . . 7 ((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) → (⟨0, 𝑌⟩ ∈ (Vtx‘𝐺) ↔ ((0 = 0 ∨ 0 = 1) ∧ 𝑌𝐼)))
145144adantr 480 . . . . . 6 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → (⟨0, 𝑌⟩ ∈ (Vtx‘𝐺) ↔ ((0 = 0 ∨ 0 = 1) ∧ 𝑌𝐼)))
146142, 145mpbird 257 . . . . 5 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → ⟨0, 𝑌⟩ ∈ (Vtx‘𝐺))
1477a1i 11 . . . . . . 7 (𝑋𝐼 → 0 ∈ V)
148 op1stg 7959 . . . . . . 7 ((0 ∈ V ∧ 𝑌𝐼) → (1st ‘⟨0, 𝑌⟩) = 0)
149147, 148sylan 580 . . . . . 6 ((𝑋𝐼𝑌𝐼) → (1st ‘⟨0, 𝑌⟩) = 0)
150149adantl 481 . . . . 5 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → (1st ‘⟨0, 𝑌⟩) = 0)
15116, 17, 18, 19gpgedgvtx0 48025 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (⟨0, 𝑌⟩ ∈ (Vtx‘𝐺) ∧ (1st ‘⟨0, 𝑌⟩) = 0)) → ({⟨0, 𝑌⟩, ⟨0, (((2nd ‘⟨0, 𝑌⟩) + 1) mod 𝑁)⟩} ∈ 𝐸 ∧ {⟨0, 𝑌⟩, ⟨1, (2nd ‘⟨0, 𝑌⟩)⟩} ∈ 𝐸 ∧ {⟨0, 𝑌⟩, ⟨0, (((2nd ‘⟨0, 𝑌⟩) − 1) mod 𝑁)⟩} ∈ 𝐸))
1525, 146, 150, 151syl12anc 836 . . . 4 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → ({⟨0, 𝑌⟩, ⟨0, (((2nd ‘⟨0, 𝑌⟩) + 1) mod 𝑁)⟩} ∈ 𝐸 ∧ {⟨0, 𝑌⟩, ⟨1, (2nd ‘⟨0, 𝑌⟩)⟩} ∈ 𝐸 ∧ {⟨0, 𝑌⟩, ⟨0, (((2nd ‘⟨0, 𝑌⟩) − 1) mod 𝑁)⟩} ∈ 𝐸))
153 op2ndg 7960 . . . . . . . . . . . 12 ((0 ∈ V ∧ 𝑌𝐼) → (2nd ‘⟨0, 𝑌⟩) = 𝑌)
1547, 153mpan 690 . . . . . . . . . . 11 (𝑌𝐼 → (2nd ‘⟨0, 𝑌⟩) = 𝑌)
155 oveq1 7376 . . . . . . . . . . . . . . . . 17 ((2nd ‘⟨0, 𝑌⟩) = 𝑌 → ((2nd ‘⟨0, 𝑌⟩) − 1) = (𝑌 − 1))
156155oveq1d 7384 . . . . . . . . . . . . . . . 16 ((2nd ‘⟨0, 𝑌⟩) = 𝑌 → (((2nd ‘⟨0, 𝑌⟩) − 1) mod 𝑁) = ((𝑌 − 1) mod 𝑁))
157156opeq2d 4840 . . . . . . . . . . . . . . 15 ((2nd ‘⟨0, 𝑌⟩) = 𝑌 → ⟨0, (((2nd ‘⟨0, 𝑌⟩) − 1) mod 𝑁)⟩ = ⟨0, ((𝑌 − 1) mod 𝑁)⟩)
158157preq2d 4700 . . . . . . . . . . . . . 14 ((2nd ‘⟨0, 𝑌⟩) = 𝑌 → {⟨0, 𝑌⟩, ⟨0, (((2nd ‘⟨0, 𝑌⟩) − 1) mod 𝑁)⟩} = {⟨0, 𝑌⟩, ⟨0, ((𝑌 − 1) mod 𝑁)⟩})
159 prcom 4692 . . . . . . . . . . . . . 14 {⟨0, 𝑌⟩, ⟨0, ((𝑌 − 1) mod 𝑁)⟩} = {⟨0, ((𝑌 − 1) mod 𝑁)⟩, ⟨0, 𝑌⟩}
160158, 159eqtrdi 2780 . . . . . . . . . . . . 13 ((2nd ‘⟨0, 𝑌⟩) = 𝑌 → {⟨0, 𝑌⟩, ⟨0, (((2nd ‘⟨0, 𝑌⟩) − 1) mod 𝑁)⟩} = {⟨0, ((𝑌 − 1) mod 𝑁)⟩, ⟨0, 𝑌⟩})
161160eleq1d 2813 . . . . . . . . . . . 12 ((2nd ‘⟨0, 𝑌⟩) = 𝑌 → ({⟨0, 𝑌⟩, ⟨0, (((2nd ‘⟨0, 𝑌⟩) − 1) mod 𝑁)⟩} ∈ 𝐸 ↔ {⟨0, ((𝑌 − 1) mod 𝑁)⟩, ⟨0, 𝑌⟩} ∈ 𝐸))
162 oveq1 7376 . . . . . . . . . . . . . . . 16 ((2nd ‘⟨0, 𝑌⟩) = 𝑌 → ((2nd ‘⟨0, 𝑌⟩) + 1) = (𝑌 + 1))
163162oveq1d 7384 . . . . . . . . . . . . . . 15 ((2nd ‘⟨0, 𝑌⟩) = 𝑌 → (((2nd ‘⟨0, 𝑌⟩) + 1) mod 𝑁) = ((𝑌 + 1) mod 𝑁))
164163opeq2d 4840 . . . . . . . . . . . . . 14 ((2nd ‘⟨0, 𝑌⟩) = 𝑌 → ⟨0, (((2nd ‘⟨0, 𝑌⟩) + 1) mod 𝑁)⟩ = ⟨0, ((𝑌 + 1) mod 𝑁)⟩)
165164preq2d 4700 . . . . . . . . . . . . 13 ((2nd ‘⟨0, 𝑌⟩) = 𝑌 → {⟨0, 𝑌⟩, ⟨0, (((2nd ‘⟨0, 𝑌⟩) + 1) mod 𝑁)⟩} = {⟨0, 𝑌⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩})
166165eleq1d 2813 . . . . . . . . . . . 12 ((2nd ‘⟨0, 𝑌⟩) = 𝑌 → ({⟨0, 𝑌⟩, ⟨0, (((2nd ‘⟨0, 𝑌⟩) + 1) mod 𝑁)⟩} ∈ 𝐸 ↔ {⟨0, 𝑌⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩} ∈ 𝐸))
167161, 166anbi12d 632 . . . . . . . . . . 11 ((2nd ‘⟨0, 𝑌⟩) = 𝑌 → (({⟨0, 𝑌⟩, ⟨0, (((2nd ‘⟨0, 𝑌⟩) − 1) mod 𝑁)⟩} ∈ 𝐸 ∧ {⟨0, 𝑌⟩, ⟨0, (((2nd ‘⟨0, 𝑌⟩) + 1) mod 𝑁)⟩} ∈ 𝐸) ↔ ({⟨0, ((𝑌 − 1) mod 𝑁)⟩, ⟨0, 𝑌⟩} ∈ 𝐸 ∧ {⟨0, 𝑌⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩} ∈ 𝐸)))
168154, 167syl 17 . . . . . . . . . 10 (𝑌𝐼 → (({⟨0, 𝑌⟩, ⟨0, (((2nd ‘⟨0, 𝑌⟩) − 1) mod 𝑁)⟩} ∈ 𝐸 ∧ {⟨0, 𝑌⟩, ⟨0, (((2nd ‘⟨0, 𝑌⟩) + 1) mod 𝑁)⟩} ∈ 𝐸) ↔ ({⟨0, ((𝑌 − 1) mod 𝑁)⟩, ⟨0, 𝑌⟩} ∈ 𝐸 ∧ {⟨0, 𝑌⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩} ∈ 𝐸)))
169168biimpcd 249 . . . . . . . . 9 (({⟨0, 𝑌⟩, ⟨0, (((2nd ‘⟨0, 𝑌⟩) − 1) mod 𝑁)⟩} ∈ 𝐸 ∧ {⟨0, 𝑌⟩, ⟨0, (((2nd ‘⟨0, 𝑌⟩) + 1) mod 𝑁)⟩} ∈ 𝐸) → (𝑌𝐼 → ({⟨0, ((𝑌 − 1) mod 𝑁)⟩, ⟨0, 𝑌⟩} ∈ 𝐸 ∧ {⟨0, 𝑌⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩} ∈ 𝐸)))
170169ancoms 458 . . . . . . . 8 (({⟨0, 𝑌⟩, ⟨0, (((2nd ‘⟨0, 𝑌⟩) + 1) mod 𝑁)⟩} ∈ 𝐸 ∧ {⟨0, 𝑌⟩, ⟨0, (((2nd ‘⟨0, 𝑌⟩) − 1) mod 𝑁)⟩} ∈ 𝐸) → (𝑌𝐼 → ({⟨0, ((𝑌 − 1) mod 𝑁)⟩, ⟨0, 𝑌⟩} ∈ 𝐸 ∧ {⟨0, 𝑌⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩} ∈ 𝐸)))
1711703adant2 1131 . . . . . . 7 (({⟨0, 𝑌⟩, ⟨0, (((2nd ‘⟨0, 𝑌⟩) + 1) mod 𝑁)⟩} ∈ 𝐸 ∧ {⟨0, 𝑌⟩, ⟨1, (2nd ‘⟨0, 𝑌⟩)⟩} ∈ 𝐸 ∧ {⟨0, 𝑌⟩, ⟨0, (((2nd ‘⟨0, 𝑌⟩) − 1) mod 𝑁)⟩} ∈ 𝐸) → (𝑌𝐼 → ({⟨0, ((𝑌 − 1) mod 𝑁)⟩, ⟨0, 𝑌⟩} ∈ 𝐸 ∧ {⟨0, 𝑌⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩} ∈ 𝐸)))
172171com12 32 . . . . . 6 (𝑌𝐼 → (({⟨0, 𝑌⟩, ⟨0, (((2nd ‘⟨0, 𝑌⟩) + 1) mod 𝑁)⟩} ∈ 𝐸 ∧ {⟨0, 𝑌⟩, ⟨1, (2nd ‘⟨0, 𝑌⟩)⟩} ∈ 𝐸 ∧ {⟨0, 𝑌⟩, ⟨0, (((2nd ‘⟨0, 𝑌⟩) − 1) mod 𝑁)⟩} ∈ 𝐸) → ({⟨0, ((𝑌 − 1) mod 𝑁)⟩, ⟨0, 𝑌⟩} ∈ 𝐸 ∧ {⟨0, 𝑌⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩} ∈ 𝐸)))
173172adantl 481 . . . . 5 ((𝑋𝐼𝑌𝐼) → (({⟨0, 𝑌⟩, ⟨0, (((2nd ‘⟨0, 𝑌⟩) + 1) mod 𝑁)⟩} ∈ 𝐸 ∧ {⟨0, 𝑌⟩, ⟨1, (2nd ‘⟨0, 𝑌⟩)⟩} ∈ 𝐸 ∧ {⟨0, 𝑌⟩, ⟨0, (((2nd ‘⟨0, 𝑌⟩) − 1) mod 𝑁)⟩} ∈ 𝐸) → ({⟨0, ((𝑌 − 1) mod 𝑁)⟩, ⟨0, 𝑌⟩} ∈ 𝐸 ∧ {⟨0, 𝑌⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩} ∈ 𝐸)))
174173adantl 481 . . . 4 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → (({⟨0, 𝑌⟩, ⟨0, (((2nd ‘⟨0, 𝑌⟩) + 1) mod 𝑁)⟩} ∈ 𝐸 ∧ {⟨0, 𝑌⟩, ⟨1, (2nd ‘⟨0, 𝑌⟩)⟩} ∈ 𝐸 ∧ {⟨0, 𝑌⟩, ⟨0, (((2nd ‘⟨0, 𝑌⟩) − 1) mod 𝑁)⟩} ∈ 𝐸) → ({⟨0, ((𝑌 − 1) mod 𝑁)⟩, ⟨0, 𝑌⟩} ∈ 𝐸 ∧ {⟨0, 𝑌⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩} ∈ 𝐸)))
175152, 174mpd 15 . . 3 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → ({⟨0, ((𝑌 − 1) mod 𝑁)⟩, ⟨0, 𝑌⟩} ∈ 𝐸 ∧ {⟨0, 𝑌⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩} ∈ 𝐸))
176 opeq2 4834 . . . . . 6 (𝑋 = 𝑌 → ⟨0, 𝑋⟩ = ⟨0, 𝑌⟩)
177176preq2d 4700 . . . . 5 (𝑋 = 𝑌 → {⟨0, ((𝑌 − 1) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨0, ((𝑌 − 1) mod 𝑁)⟩, ⟨0, 𝑌⟩})
178177eleq1d 2813 . . . 4 (𝑋 = 𝑌 → ({⟨0, ((𝑌 − 1) mod 𝑁)⟩, ⟨0, 𝑋⟩} ∈ 𝐸 ↔ {⟨0, ((𝑌 − 1) mod 𝑁)⟩, ⟨0, 𝑌⟩} ∈ 𝐸))
179176preq1d 4699 . . . . 5 (𝑋 = 𝑌 → {⟨0, 𝑋⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩} = {⟨0, 𝑌⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩})
180179eleq1d 2813 . . . 4 (𝑋 = 𝑌 → ({⟨0, 𝑋⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩} ∈ 𝐸 ↔ {⟨0, 𝑌⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩} ∈ 𝐸))
181178, 180anbi12d 632 . . 3 (𝑋 = 𝑌 → (({⟨0, ((𝑌 − 1) mod 𝑁)⟩, ⟨0, 𝑋⟩} ∈ 𝐸 ∧ {⟨0, 𝑋⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩} ∈ 𝐸) ↔ ({⟨0, ((𝑌 − 1) mod 𝑁)⟩, ⟨0, 𝑌⟩} ∈ 𝐸 ∧ {⟨0, 𝑌⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩} ∈ 𝐸)))
182175, 181syl5ibrcom 247 . 2 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → (𝑋 = 𝑌 → ({⟨0, ((𝑌 − 1) mod 𝑁)⟩, ⟨0, 𝑋⟩} ∈ 𝐸 ∧ {⟨0, 𝑋⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩} ∈ 𝐸)))
183138, 182impbid 212 1 (((𝑁 ∈ (ℤ‘5) ∧ 𝐾𝐽) ∧ (𝑋𝐼𝑌𝐼)) → (({⟨0, ((𝑌 − 1) mod 𝑁)⟩, ⟨0, 𝑋⟩} ∈ 𝐸 ∧ {⟨0, 𝑋⟩, ⟨0, ((𝑌 + 1) mod 𝑁)⟩} ∈ 𝐸) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444  {cpr 4587  cop 4591  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  0cc0 11044  1c1 11045   + caddc 11047  cmin 11381   / cdiv 11811  2c2 12217  3c3 12218  5c5 12220  cz 12505  cuz 12769  ..^cfzo 13591  cceil 13729   mod cmo 13807  Vtxcvtx 28899  Edgcedg 28950   gPetersenGr cgpg 48004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-ico 13288  df-fz 13445  df-fzo 13592  df-fl 13730  df-ceil 13731  df-mod 13808  df-hash 14272  df-dvds 16199  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-edgf 28892  df-vtx 28901  df-iedg 28902  df-edg 28951  df-umgr 28986  df-usgr 29054  df-gpg 48005
This theorem is referenced by:  pgnbgreunbgrlem1  48076
  Copyright terms: Public domain W3C validator