![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > m2cpminv0 | Structured version Visualization version GIF version |
Description: The inverse matrix transformation applied to the zero polynomial matrix results in the zero of the matrices over the base ring of the polynomials. (Contributed by AV, 24-Nov-2019.) (Revised by AV, 15-Dec-2019.) |
Ref | Expression |
---|---|
m2cpminv0.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
m2cpminv0.i | ⊢ 𝐼 = (𝑁 cPolyMatToMat 𝑅) |
m2cpminv0.p | ⊢ 𝑃 = (Poly1‘𝑅) |
m2cpminv0.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
m2cpminv0.0 | ⊢ 0 = (0g‘𝐴) |
m2cpminv0.z | ⊢ 𝑍 = (0g‘𝐶) |
Ref | Expression |
---|---|
m2cpminv0 | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐼‘𝑍) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2724 | . . . . . 6 ⊢ (𝑁 matToPolyMat 𝑅) = (𝑁 matToPolyMat 𝑅) | |
2 | m2cpminv0.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | m2cpminv0.0 | . . . . . . 7 ⊢ 0 = (0g‘𝐴) | |
4 | m2cpminv0.a | . . . . . . . 8 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
5 | 4 | fveq2i 6884 | . . . . . . 7 ⊢ (0g‘𝐴) = (0g‘(𝑁 Mat 𝑅)) |
6 | 3, 5 | eqtri 2752 | . . . . . 6 ⊢ 0 = (0g‘(𝑁 Mat 𝑅)) |
7 | m2cpminv0.z | . . . . . . 7 ⊢ 𝑍 = (0g‘𝐶) | |
8 | m2cpminv0.c | . . . . . . . 8 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
9 | 8 | fveq2i 6884 | . . . . . . 7 ⊢ (0g‘𝐶) = (0g‘(𝑁 Mat 𝑃)) |
10 | 7, 9 | eqtri 2752 | . . . . . 6 ⊢ 𝑍 = (0g‘(𝑁 Mat 𝑃)) |
11 | 1, 2, 6, 10 | 0mat2pmat 22548 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((𝑁 matToPolyMat 𝑅)‘ 0 ) = 𝑍) |
12 | 11 | ancoms 458 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑁 matToPolyMat 𝑅)‘ 0 ) = 𝑍) |
13 | 12 | eqcomd 2730 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑍 = ((𝑁 matToPolyMat 𝑅)‘ 0 )) |
14 | 13 | fveq2d 6885 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐼‘𝑍) = (𝐼‘((𝑁 matToPolyMat 𝑅)‘ 0 ))) |
15 | 4 | matring 22255 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
16 | eqid 2724 | . . . . 5 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
17 | 16, 3 | ring0cl 20151 | . . . 4 ⊢ (𝐴 ∈ Ring → 0 ∈ (Base‘𝐴)) |
18 | 15, 17 | syl 17 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0 ∈ (Base‘𝐴)) |
19 | m2cpminv0.i | . . . 4 ⊢ 𝐼 = (𝑁 cPolyMatToMat 𝑅) | |
20 | 19, 4, 16, 1 | m2cpminvid 22565 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 0 ∈ (Base‘𝐴)) → (𝐼‘((𝑁 matToPolyMat 𝑅)‘ 0 )) = 0 ) |
21 | 18, 20 | mpd3an3 1458 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐼‘((𝑁 matToPolyMat 𝑅)‘ 0 )) = 0 ) |
22 | 14, 21 | eqtrd 2764 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐼‘𝑍) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ‘cfv 6533 (class class class)co 7401 Fincfn 8934 Basecbs 17140 0gc0g 17381 Ringcrg 20123 Poly1cpl1 22010 Mat cmat 22217 matToPolyMat cmat2pmat 22516 cPolyMatToMat ccpmat2mat 22517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-ot 4629 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-ofr 7664 df-om 7849 df-1st 7968 df-2nd 7969 df-supp 8141 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-map 8817 df-pm 8818 df-ixp 8887 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-fsupp 9357 df-sup 9432 df-oi 9500 df-card 9929 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-fzo 13624 df-seq 13963 df-hash 14287 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-hom 17217 df-cco 17218 df-0g 17383 df-gsum 17384 df-prds 17389 df-pws 17391 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18560 df-sgrp 18639 df-mnd 18655 df-mhm 18700 df-submnd 18701 df-grp 18853 df-minusg 18854 df-sbg 18855 df-mulg 18983 df-subg 19035 df-ghm 19124 df-cntz 19218 df-cmn 19687 df-abl 19688 df-mgp 20025 df-rng 20043 df-ur 20072 df-ring 20125 df-subrng 20431 df-subrg 20456 df-lmod 20693 df-lss 20764 df-sra 21006 df-rgmod 21007 df-dsmm 21587 df-frlm 21602 df-ascl 21710 df-psr 21762 df-mvr 21763 df-mpl 21764 df-opsr 21766 df-psr1 22013 df-vr1 22014 df-ply1 22015 df-coe1 22016 df-mamu 22196 df-mat 22218 df-cpmat 22518 df-mat2pmat 22519 df-cpmat2mat 22520 |
This theorem is referenced by: cpmadumatpolylem2 22694 cayhamlem4 22700 cayleyhamilton0 22701 cayleyhamiltonALT 22703 |
Copyright terms: Public domain | W3C validator |