MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efiarg Structured version   Visualization version   GIF version

Theorem efiarg 25312
Description: The exponential of the "arg" function ℑ ∘ log. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
efiarg ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))

Proof of Theorem efiarg
StepHypRef Expression
1 logcl 25274 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
21recld 14615 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘(log‘𝐴)) ∈ ℝ)
32recnd 10721 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘(log‘𝐴)) ∈ ℂ)
4 efsub 15515 . . 3 (((log‘𝐴) ∈ ℂ ∧ (ℜ‘(log‘𝐴)) ∈ ℂ) → (exp‘((log‘𝐴) − (ℜ‘(log‘𝐴)))) = ((exp‘(log‘𝐴)) / (exp‘(ℜ‘(log‘𝐴)))))
51, 3, 4syl2anc 587 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘((log‘𝐴) − (ℜ‘(log‘𝐴)))) = ((exp‘(log‘𝐴)) / (exp‘(ℜ‘(log‘𝐴)))))
6 ax-icn 10648 . . . . 5 i ∈ ℂ
71imcld 14616 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℝ)
87recnd 10721 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℂ)
9 mulcl 10673 . . . . 5 ((i ∈ ℂ ∧ (ℑ‘(log‘𝐴)) ∈ ℂ) → (i · (ℑ‘(log‘𝐴))) ∈ ℂ)
106, 8, 9sylancr 590 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (i · (ℑ‘(log‘𝐴))) ∈ ℂ)
111replimd 14618 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) = ((ℜ‘(log‘𝐴)) + (i · (ℑ‘(log‘𝐴)))))
123, 10, 11mvrladdd 11105 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((log‘𝐴) − (ℜ‘(log‘𝐴))) = (i · (ℑ‘(log‘𝐴))))
1312fveq2d 6668 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘((log‘𝐴) − (ℜ‘(log‘𝐴)))) = (exp‘(i · (ℑ‘(log‘𝐴)))))
14 eflog 25282 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
15 relog 25302 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘(log‘𝐴)) = (log‘(abs‘𝐴)))
1615fveq2d 6668 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(ℜ‘(log‘𝐴))) = (exp‘(log‘(abs‘𝐴))))
17 abscl 14700 . . . . . . 7 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
1817adantr 484 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ)
1918recnd 10721 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℂ)
20 absrpcl 14710 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
2120rpne0d 12491 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ≠ 0)
22 eflog 25282 . . . . 5 (((abs‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ≠ 0) → (exp‘(log‘(abs‘𝐴))) = (abs‘𝐴))
2319, 21, 22syl2anc 587 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘(abs‘𝐴))) = (abs‘𝐴))
2416, 23eqtrd 2794 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(ℜ‘(log‘𝐴))) = (abs‘𝐴))
2514, 24oveq12d 7175 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((exp‘(log‘𝐴)) / (exp‘(ℜ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))
265, 13, 253eqtr3d 2802 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1539  wcel 2112  wne 2952  cfv 6341  (class class class)co 7157  cc 10587  cr 10588  0cc0 10589  ici 10591   · cmul 10594  cmin 10922   / cdiv 11349  cre 14518  cim 14519  abscabs 14655  expce 15477  logclog 25260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5161  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466  ax-inf2 9151  ax-cnex 10645  ax-resscn 10646  ax-1cn 10647  ax-icn 10648  ax-addcl 10649  ax-addrcl 10650  ax-mulcl 10651  ax-mulrcl 10652  ax-mulcom 10653  ax-addass 10654  ax-mulass 10655  ax-distr 10656  ax-i2m1 10657  ax-1ne0 10658  ax-1rid 10659  ax-rnegex 10660  ax-rrecex 10661  ax-cnre 10662  ax-pre-lttri 10663  ax-pre-lttrn 10664  ax-pre-ltadd 10665  ax-pre-mulgt0 10666  ax-pre-sup 10667  ax-addf 10668  ax-mulf 10669
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-pss 3880  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4803  df-int 4843  df-iun 4889  df-iin 4890  df-br 5038  df-opab 5100  df-mpt 5118  df-tr 5144  df-id 5435  df-eprel 5440  df-po 5448  df-so 5449  df-fr 5488  df-se 5489  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6132  df-ord 6178  df-on 6179  df-lim 6180  df-suc 6181  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-isom 6350  df-riota 7115  df-ov 7160  df-oprab 7161  df-mpo 7162  df-of 7412  df-om 7587  df-1st 7700  df-2nd 7701  df-supp 7843  df-wrecs 7964  df-recs 8025  df-rdg 8063  df-1o 8119  df-2o 8120  df-er 8306  df-map 8425  df-pm 8426  df-ixp 8494  df-en 8542  df-dom 8543  df-sdom 8544  df-fin 8545  df-fsupp 8881  df-fi 8922  df-sup 8953  df-inf 8954  df-oi 9021  df-card 9415  df-pnf 10729  df-mnf 10730  df-xr 10731  df-ltxr 10732  df-le 10733  df-sub 10924  df-neg 10925  df-div 11350  df-nn 11689  df-2 11751  df-3 11752  df-4 11753  df-5 11754  df-6 11755  df-7 11756  df-8 11757  df-9 11758  df-n0 11949  df-z 12035  df-dec 12152  df-uz 12297  df-q 12403  df-rp 12445  df-xneg 12562  df-xadd 12563  df-xmul 12564  df-ioo 12797  df-ioc 12798  df-ico 12799  df-icc 12800  df-fz 12954  df-fzo 13097  df-fl 13225  df-mod 13301  df-seq 13433  df-exp 13494  df-fac 13698  df-bc 13727  df-hash 13755  df-shft 14488  df-cj 14520  df-re 14521  df-im 14522  df-sqrt 14656  df-abs 14657  df-limsup 14890  df-clim 14907  df-rlim 14908  df-sum 15105  df-ef 15483  df-sin 15485  df-cos 15486  df-pi 15488  df-struct 16558  df-ndx 16559  df-slot 16560  df-base 16562  df-sets 16563  df-ress 16564  df-plusg 16651  df-mulr 16652  df-starv 16653  df-sca 16654  df-vsca 16655  df-ip 16656  df-tset 16657  df-ple 16658  df-ds 16660  df-unif 16661  df-hom 16662  df-cco 16663  df-rest 16769  df-topn 16770  df-0g 16788  df-gsum 16789  df-topgen 16790  df-pt 16791  df-prds 16794  df-xrs 16848  df-qtop 16853  df-imas 16854  df-xps 16856  df-mre 16930  df-mrc 16931  df-acs 16933  df-mgm 17933  df-sgrp 17982  df-mnd 17993  df-submnd 18038  df-mulg 18307  df-cntz 18529  df-cmn 18990  df-psmet 20173  df-xmet 20174  df-met 20175  df-bl 20176  df-mopn 20177  df-fbas 20178  df-fg 20179  df-cnfld 20182  df-top 21609  df-topon 21626  df-topsp 21648  df-bases 21661  df-cld 21734  df-ntr 21735  df-cls 21736  df-nei 21813  df-lp 21851  df-perf 21852  df-cn 21942  df-cnp 21943  df-haus 22030  df-tx 22277  df-hmeo 22470  df-fil 22561  df-fm 22653  df-flim 22654  df-flf 22655  df-xms 23037  df-ms 23038  df-tms 23039  df-cncf 23594  df-limc 24580  df-dv 24581  df-log 25262
This theorem is referenced by:  cosargd  25313  argregt0  25315  argrege0  25316  argimgt0  25317  tanarg  25324  lawcos  25516
  Copyright terms: Public domain W3C validator