MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegxrcl Structured version   Visualization version   GIF version

Theorem mdegxrcl 25584
Description: Closure of polynomial degree in the extended reals. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.)
Hypotheses
Ref Expression
mdegxrcl.d 𝐷 = (𝐼 mDeg 𝑅)
mdegxrcl.p 𝑃 = (𝐼 mPoly 𝑅)
mdegxrcl.b 𝐡 = (Baseβ€˜π‘ƒ)
Assertion
Ref Expression
mdegxrcl (𝐹 ∈ 𝐡 β†’ (π·β€˜πΉ) ∈ ℝ*)

Proof of Theorem mdegxrcl
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegxrcl.d . . 3 𝐷 = (𝐼 mDeg 𝑅)
2 mdegxrcl.p . . 3 𝑃 = (𝐼 mPoly 𝑅)
3 mdegxrcl.b . . 3 𝐡 = (Baseβ€˜π‘ƒ)
4 eqid 2732 . . 3 (0gβ€˜π‘…) = (0gβ€˜π‘…)
5 eqid 2732 . . 3 {π‘₯ ∈ (β„•0 ↑m 𝐼) ∣ (β—‘π‘₯ β€œ β„•) ∈ Fin} = {π‘₯ ∈ (β„•0 ↑m 𝐼) ∣ (β—‘π‘₯ β€œ β„•) ∈ Fin}
6 eqid 2732 . . 3 (𝑦 ∈ {π‘₯ ∈ (β„•0 ↑m 𝐼) ∣ (β—‘π‘₯ β€œ β„•) ∈ Fin} ↦ (β„‚fld Ξ£g 𝑦)) = (𝑦 ∈ {π‘₯ ∈ (β„•0 ↑m 𝐼) ∣ (β—‘π‘₯ β€œ β„•) ∈ Fin} ↦ (β„‚fld Ξ£g 𝑦))
71, 2, 3, 4, 5, 6mdegval 25580 . 2 (𝐹 ∈ 𝐡 β†’ (π·β€˜πΉ) = sup(((𝑦 ∈ {π‘₯ ∈ (β„•0 ↑m 𝐼) ∣ (β—‘π‘₯ β€œ β„•) ∈ Fin} ↦ (β„‚fld Ξ£g 𝑦)) β€œ (𝐹 supp (0gβ€˜π‘…))), ℝ*, < ))
8 imassrn 6070 . . . 4 ((𝑦 ∈ {π‘₯ ∈ (β„•0 ↑m 𝐼) ∣ (β—‘π‘₯ β€œ β„•) ∈ Fin} ↦ (β„‚fld Ξ£g 𝑦)) β€œ (𝐹 supp (0gβ€˜π‘…))) βŠ† ran (𝑦 ∈ {π‘₯ ∈ (β„•0 ↑m 𝐼) ∣ (β—‘π‘₯ β€œ β„•) ∈ Fin} ↦ (β„‚fld Ξ£g 𝑦))
95, 6tdeglem1 25572 . . . . . 6 (𝑦 ∈ {π‘₯ ∈ (β„•0 ↑m 𝐼) ∣ (β—‘π‘₯ β€œ β„•) ∈ Fin} ↦ (β„‚fld Ξ£g 𝑦)):{π‘₯ ∈ (β„•0 ↑m 𝐼) ∣ (β—‘π‘₯ β€œ β„•) ∈ Fin}βŸΆβ„•0
10 frn 6724 . . . . . 6 ((𝑦 ∈ {π‘₯ ∈ (β„•0 ↑m 𝐼) ∣ (β—‘π‘₯ β€œ β„•) ∈ Fin} ↦ (β„‚fld Ξ£g 𝑦)):{π‘₯ ∈ (β„•0 ↑m 𝐼) ∣ (β—‘π‘₯ β€œ β„•) ∈ Fin}βŸΆβ„•0 β†’ ran (𝑦 ∈ {π‘₯ ∈ (β„•0 ↑m 𝐼) ∣ (β—‘π‘₯ β€œ β„•) ∈ Fin} ↦ (β„‚fld Ξ£g 𝑦)) βŠ† β„•0)
119, 10mp1i 13 . . . . 5 (𝐹 ∈ 𝐡 β†’ ran (𝑦 ∈ {π‘₯ ∈ (β„•0 ↑m 𝐼) ∣ (β—‘π‘₯ β€œ β„•) ∈ Fin} ↦ (β„‚fld Ξ£g 𝑦)) βŠ† β„•0)
12 nn0ssre 12475 . . . . . 6 β„•0 βŠ† ℝ
13 ressxr 11257 . . . . . 6 ℝ βŠ† ℝ*
1412, 13sstri 3991 . . . . 5 β„•0 βŠ† ℝ*
1511, 14sstrdi 3994 . . . 4 (𝐹 ∈ 𝐡 β†’ ran (𝑦 ∈ {π‘₯ ∈ (β„•0 ↑m 𝐼) ∣ (β—‘π‘₯ β€œ β„•) ∈ Fin} ↦ (β„‚fld Ξ£g 𝑦)) βŠ† ℝ*)
168, 15sstrid 3993 . . 3 (𝐹 ∈ 𝐡 β†’ ((𝑦 ∈ {π‘₯ ∈ (β„•0 ↑m 𝐼) ∣ (β—‘π‘₯ β€œ β„•) ∈ Fin} ↦ (β„‚fld Ξ£g 𝑦)) β€œ (𝐹 supp (0gβ€˜π‘…))) βŠ† ℝ*)
17 supxrcl 13293 . . 3 (((𝑦 ∈ {π‘₯ ∈ (β„•0 ↑m 𝐼) ∣ (β—‘π‘₯ β€œ β„•) ∈ Fin} ↦ (β„‚fld Ξ£g 𝑦)) β€œ (𝐹 supp (0gβ€˜π‘…))) βŠ† ℝ* β†’ sup(((𝑦 ∈ {π‘₯ ∈ (β„•0 ↑m 𝐼) ∣ (β—‘π‘₯ β€œ β„•) ∈ Fin} ↦ (β„‚fld Ξ£g 𝑦)) β€œ (𝐹 supp (0gβ€˜π‘…))), ℝ*, < ) ∈ ℝ*)
1816, 17syl 17 . 2 (𝐹 ∈ 𝐡 β†’ sup(((𝑦 ∈ {π‘₯ ∈ (β„•0 ↑m 𝐼) ∣ (β—‘π‘₯ β€œ β„•) ∈ Fin} ↦ (β„‚fld Ξ£g 𝑦)) β€œ (𝐹 supp (0gβ€˜π‘…))), ℝ*, < ) ∈ ℝ*)
197, 18eqeltrd 2833 1 (𝐹 ∈ 𝐡 β†’ (π·β€˜πΉ) ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  {crab 3432   βŠ† wss 3948   ↦ cmpt 5231  β—‘ccnv 5675  ran crn 5677   β€œ cima 5679  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7408   supp csupp 8145   ↑m cmap 8819  Fincfn 8938  supcsup 9434  β„cr 11108  β„*cxr 11246   < clt 11247  β„•cn 12211  β„•0cn0 12471  Basecbs 17143  0gc0g 17384   Ξ£g cgsu 17385  β„‚fldccnfld 20943   mPoly cmpl 21458   mDeg cmdg 25567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187  ax-addf 11188  ax-mulf 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-of 7669  df-om 7855  df-1st 7974  df-2nd 7975  df-supp 8146  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fsupp 9361  df-sup 9436  df-oi 9504  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-dec 12677  df-uz 12822  df-fz 13484  df-fzo 13627  df-seq 13966  df-hash 14290  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-0g 17386  df-gsum 17387  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-submnd 18671  df-grp 18821  df-minusg 18822  df-cntz 19180  df-cmn 19649  df-abl 19650  df-mgp 19987  df-ur 20004  df-ring 20057  df-cring 20058  df-cnfld 20944  df-psr 21461  df-mpl 21463  df-mdeg 25569
This theorem is referenced by:  mdegxrf  25585  mdegaddle  25591  mdegvscale  25592  mdegmullem  25595
  Copyright terms: Public domain W3C validator