| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mdegxrcl | Structured version Visualization version GIF version | ||
| Description: Closure of polynomial degree in the extended reals. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
| Ref | Expression |
|---|---|
| mdegxrcl.d | ⊢ 𝐷 = (𝐼 mDeg 𝑅) |
| mdegxrcl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mdegxrcl.b | ⊢ 𝐵 = (Base‘𝑃) |
| Ref | Expression |
|---|---|
| mdegxrcl | ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdegxrcl.d | . . 3 ⊢ 𝐷 = (𝐼 mDeg 𝑅) | |
| 2 | mdegxrcl.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 3 | mdegxrcl.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
| 4 | eqid 2731 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 5 | eqid 2731 | . . 3 ⊢ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} = {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} | |
| 6 | eqid 2731 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) | |
| 7 | 1, 2, 3, 4, 5, 6 | mdegval 25990 | . 2 ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝐹 supp (0g‘𝑅))), ℝ*, < )) |
| 8 | imassrn 6015 | . . . 4 ⊢ ((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝐹 supp (0g‘𝑅))) ⊆ ran (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) | |
| 9 | 5, 6 | tdeglem1 25985 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)):{𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin}⟶ℕ0 |
| 10 | frn 6653 | . . . . . 6 ⊢ ((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)):{𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin}⟶ℕ0 → ran (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) ⊆ ℕ0) | |
| 11 | 9, 10 | mp1i 13 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → ran (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) ⊆ ℕ0) |
| 12 | nn0ssre 12380 | . . . . . 6 ⊢ ℕ0 ⊆ ℝ | |
| 13 | ressxr 11151 | . . . . . 6 ⊢ ℝ ⊆ ℝ* | |
| 14 | 12, 13 | sstri 3939 | . . . . 5 ⊢ ℕ0 ⊆ ℝ* |
| 15 | 11, 14 | sstrdi 3942 | . . . 4 ⊢ (𝐹 ∈ 𝐵 → ran (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) ⊆ ℝ*) |
| 16 | 8, 15 | sstrid 3941 | . . 3 ⊢ (𝐹 ∈ 𝐵 → ((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝐹 supp (0g‘𝑅))) ⊆ ℝ*) |
| 17 | supxrcl 13209 | . . 3 ⊢ (((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝐹 supp (0g‘𝑅))) ⊆ ℝ* → sup(((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝐹 supp (0g‘𝑅))), ℝ*, < ) ∈ ℝ*) | |
| 18 | 16, 17 | syl 17 | . 2 ⊢ (𝐹 ∈ 𝐵 → sup(((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝐹 supp (0g‘𝑅))), ℝ*, < ) ∈ ℝ*) |
| 19 | 7, 18 | eqeltrd 2831 | 1 ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) ∈ ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 ⊆ wss 3897 ↦ cmpt 5167 ◡ccnv 5610 ran crn 5612 “ cima 5614 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 supp csupp 8085 ↑m cmap 8745 Fincfn 8864 supcsup 9319 ℝcr 11000 ℝ*cxr 11140 < clt 11141 ℕcn 12120 ℕ0cn0 12376 Basecbs 17115 0gc0g 17338 Σg cgsu 17339 ℂfldccnfld 21286 mPoly cmpl 21838 mDeg cmdg 25980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 ax-addf 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-sup 9321 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-fzo 13550 df-seq 13904 df-hash 14233 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-starv 17171 df-sca 17172 df-vsca 17173 df-tset 17175 df-ple 17176 df-ds 17178 df-unif 17179 df-0g 17340 df-gsum 17341 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-cntz 19224 df-cmn 19689 df-abl 19690 df-mgp 20054 df-ur 20095 df-ring 20148 df-cring 20149 df-cnfld 21287 df-psr 21841 df-mpl 21843 df-mdeg 25982 |
| This theorem is referenced by: mdegxrf 25995 mdegaddle 26001 mdegvscale 26002 mdegmullem 26005 |
| Copyright terms: Public domain | W3C validator |