![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mdegxrcl | Structured version Visualization version GIF version |
Description: Closure of polynomial degree in the extended reals. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
Ref | Expression |
---|---|
mdegxrcl.d | β’ π· = (πΌ mDeg π ) |
mdegxrcl.p | β’ π = (πΌ mPoly π ) |
mdegxrcl.b | β’ π΅ = (Baseβπ) |
Ref | Expression |
---|---|
mdegxrcl | β’ (πΉ β π΅ β (π·βπΉ) β β*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdegxrcl.d | . . 3 β’ π· = (πΌ mDeg π ) | |
2 | mdegxrcl.p | . . 3 β’ π = (πΌ mPoly π ) | |
3 | mdegxrcl.b | . . 3 β’ π΅ = (Baseβπ) | |
4 | eqid 2724 | . . 3 β’ (0gβπ ) = (0gβπ ) | |
5 | eqid 2724 | . . 3 β’ {π₯ β (β0 βm πΌ) β£ (β‘π₯ β β) β Fin} = {π₯ β (β0 βm πΌ) β£ (β‘π₯ β β) β Fin} | |
6 | eqid 2724 | . . 3 β’ (π¦ β {π₯ β (β0 βm πΌ) β£ (β‘π₯ β β) β Fin} β¦ (βfld Ξ£g π¦)) = (π¦ β {π₯ β (β0 βm πΌ) β£ (β‘π₯ β β) β Fin} β¦ (βfld Ξ£g π¦)) | |
7 | 1, 2, 3, 4, 5, 6 | mdegval 25943 | . 2 β’ (πΉ β π΅ β (π·βπΉ) = sup(((π¦ β {π₯ β (β0 βm πΌ) β£ (β‘π₯ β β) β Fin} β¦ (βfld Ξ£g π¦)) β (πΉ supp (0gβπ ))), β*, < )) |
8 | imassrn 6061 | . . . 4 β’ ((π¦ β {π₯ β (β0 βm πΌ) β£ (β‘π₯ β β) β Fin} β¦ (βfld Ξ£g π¦)) β (πΉ supp (0gβπ ))) β ran (π¦ β {π₯ β (β0 βm πΌ) β£ (β‘π₯ β β) β Fin} β¦ (βfld Ξ£g π¦)) | |
9 | 5, 6 | tdeglem1 25935 | . . . . . 6 β’ (π¦ β {π₯ β (β0 βm πΌ) β£ (β‘π₯ β β) β Fin} β¦ (βfld Ξ£g π¦)):{π₯ β (β0 βm πΌ) β£ (β‘π₯ β β) β Fin}βΆβ0 |
10 | frn 6715 | . . . . . 6 β’ ((π¦ β {π₯ β (β0 βm πΌ) β£ (β‘π₯ β β) β Fin} β¦ (βfld Ξ£g π¦)):{π₯ β (β0 βm πΌ) β£ (β‘π₯ β β) β Fin}βΆβ0 β ran (π¦ β {π₯ β (β0 βm πΌ) β£ (β‘π₯ β β) β Fin} β¦ (βfld Ξ£g π¦)) β β0) | |
11 | 9, 10 | mp1i 13 | . . . . 5 β’ (πΉ β π΅ β ran (π¦ β {π₯ β (β0 βm πΌ) β£ (β‘π₯ β β) β Fin} β¦ (βfld Ξ£g π¦)) β β0) |
12 | nn0ssre 12475 | . . . . . 6 β’ β0 β β | |
13 | ressxr 11257 | . . . . . 6 β’ β β β* | |
14 | 12, 13 | sstri 3984 | . . . . 5 β’ β0 β β* |
15 | 11, 14 | sstrdi 3987 | . . . 4 β’ (πΉ β π΅ β ran (π¦ β {π₯ β (β0 βm πΌ) β£ (β‘π₯ β β) β Fin} β¦ (βfld Ξ£g π¦)) β β*) |
16 | 8, 15 | sstrid 3986 | . . 3 β’ (πΉ β π΅ β ((π¦ β {π₯ β (β0 βm πΌ) β£ (β‘π₯ β β) β Fin} β¦ (βfld Ξ£g π¦)) β (πΉ supp (0gβπ ))) β β*) |
17 | supxrcl 13295 | . . 3 β’ (((π¦ β {π₯ β (β0 βm πΌ) β£ (β‘π₯ β β) β Fin} β¦ (βfld Ξ£g π¦)) β (πΉ supp (0gβπ ))) β β* β sup(((π¦ β {π₯ β (β0 βm πΌ) β£ (β‘π₯ β β) β Fin} β¦ (βfld Ξ£g π¦)) β (πΉ supp (0gβπ ))), β*, < ) β β*) | |
18 | 16, 17 | syl 17 | . 2 β’ (πΉ β π΅ β sup(((π¦ β {π₯ β (β0 βm πΌ) β£ (β‘π₯ β β) β Fin} β¦ (βfld Ξ£g π¦)) β (πΉ supp (0gβπ ))), β*, < ) β β*) |
19 | 7, 18 | eqeltrd 2825 | 1 β’ (πΉ β π΅ β (π·βπΉ) β β*) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 {crab 3424 β wss 3941 β¦ cmpt 5222 β‘ccnv 5666 ran crn 5668 β cima 5670 βΆwf 6530 βcfv 6534 (class class class)co 7402 supp csupp 8141 βm cmap 8817 Fincfn 8936 supcsup 9432 βcr 11106 β*cxr 11246 < clt 11247 βcn 12211 β0cn0 12471 Basecbs 17149 0gc0g 17390 Ξ£g cgsu 17391 βfldccnfld 21234 mPoly cmpl 21789 mDeg cmdg 25930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 ax-addf 11186 ax-mulf 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-tp 4626 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-se 5623 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-isom 6543 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-of 7664 df-om 7850 df-1st 7969 df-2nd 7970 df-supp 8142 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8700 df-map 8819 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-fsupp 9359 df-sup 9434 df-oi 9502 df-card 9931 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-fz 13486 df-fzo 13629 df-seq 13968 df-hash 14292 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-sca 17218 df-vsca 17219 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-0g 17392 df-gsum 17393 df-mgm 18569 df-sgrp 18648 df-mnd 18664 df-submnd 18710 df-grp 18862 df-minusg 18863 df-cntz 19229 df-cmn 19698 df-abl 19699 df-mgp 20036 df-ur 20083 df-ring 20136 df-cring 20137 df-cnfld 21235 df-psr 21792 df-mpl 21794 df-mdeg 25932 |
This theorem is referenced by: mdegxrf 25948 mdegaddle 25954 mdegvscale 25955 mdegmullem 25958 |
Copyright terms: Public domain | W3C validator |