| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > receqid | Structured version Visualization version GIF version | ||
| Description: Real numbers equal to their own reciprocal have absolute value 1. (Contributed by Thierry Arnoux, 9-Nov-2025.) |
| Ref | Expression |
|---|---|
| receqid.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| receqid.2 | ⊢ (𝜑 → 𝐴 ≠ 0) |
| Ref | Expression |
|---|---|
| receqid | ⊢ (𝜑 → ((1 / 𝐴) = 𝐴 ↔ (abs‘𝐴) = 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | receqid.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | 1 | absred 15389 | . . 3 ⊢ (𝜑 → (abs‘𝐴) = (√‘(𝐴↑2))) |
| 3 | sqrt1 15243 | . . . . 5 ⊢ (√‘1) = 1 | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → (√‘1) = 1) |
| 5 | 4 | eqcomd 2736 | . . 3 ⊢ (𝜑 → 1 = (√‘1)) |
| 6 | 2, 5 | eqeq12d 2746 | . 2 ⊢ (𝜑 → ((abs‘𝐴) = 1 ↔ (√‘(𝐴↑2)) = (√‘1))) |
| 7 | 1 | resqcld 14096 | . . . 4 ⊢ (𝜑 → (𝐴↑2) ∈ ℝ) |
| 8 | 1 | sqge0d 14108 | . . . 4 ⊢ (𝜑 → 0 ≤ (𝐴↑2)) |
| 9 | 1red 11181 | . . . 4 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 10 | 0le1 11707 | . . . . 5 ⊢ 0 ≤ 1 | |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ≤ 1) |
| 12 | sqrt11 15234 | . . . 4 ⊢ ((((𝐴↑2) ∈ ℝ ∧ 0 ≤ (𝐴↑2)) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → ((√‘(𝐴↑2)) = (√‘1) ↔ (𝐴↑2) = 1)) | |
| 13 | 7, 8, 9, 11, 12 | syl22anc 838 | . . 3 ⊢ (𝜑 → ((√‘(𝐴↑2)) = (√‘1) ↔ (𝐴↑2) = 1)) |
| 14 | 7 | recnd 11208 | . . . 4 ⊢ (𝜑 → (𝐴↑2) ∈ ℂ) |
| 15 | 1cnd 11175 | . . . 4 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 16 | 1 | recnd 11208 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 17 | receqid.2 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 0) | |
| 18 | div11 11871 | . . . 4 ⊢ (((𝐴↑2) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → (((𝐴↑2) / 𝐴) = (1 / 𝐴) ↔ (𝐴↑2) = 1)) | |
| 19 | 14, 15, 16, 17, 18 | syl112anc 1376 | . . 3 ⊢ (𝜑 → (((𝐴↑2) / 𝐴) = (1 / 𝐴) ↔ (𝐴↑2) = 1)) |
| 20 | sqdivid 14093 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴↑2) / 𝐴) = 𝐴) | |
| 21 | 16, 17, 20 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐴↑2) / 𝐴) = 𝐴) |
| 22 | 21 | eqeq1d 2732 | . . 3 ⊢ (𝜑 → (((𝐴↑2) / 𝐴) = (1 / 𝐴) ↔ 𝐴 = (1 / 𝐴))) |
| 23 | 13, 19, 22 | 3bitr2rd 308 | . 2 ⊢ (𝜑 → (𝐴 = (1 / 𝐴) ↔ (√‘(𝐴↑2)) = (√‘1))) |
| 24 | eqcom 2737 | . . 3 ⊢ (𝐴 = (1 / 𝐴) ↔ (1 / 𝐴) = 𝐴) | |
| 25 | 24 | a1i 11 | . 2 ⊢ (𝜑 → (𝐴 = (1 / 𝐴) ↔ (1 / 𝐴) = 𝐴)) |
| 26 | 6, 23, 25 | 3bitr2rd 308 | 1 ⊢ (𝜑 → ((1 / 𝐴) = 𝐴 ↔ (abs‘𝐴) = 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 class class class wbr 5109 ‘cfv 6513 (class class class)co 7389 ℂcc 11072 ℝcr 11073 0cc0 11074 1c1 11075 ≤ cle 11215 / cdiv 11841 2c2 12242 ↑cexp 14032 √csqrt 15205 abscabs 15206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-sup 9399 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-n0 12449 df-z 12536 df-uz 12800 df-rp 12958 df-seq 13973 df-exp 14033 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 |
| This theorem is referenced by: cos9thpiminplylem2 33779 |
| Copyright terms: Public domain | W3C validator |