| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pythagreim | Structured version Visualization version GIF version | ||
| Description: A simplified version of the Pythagorean theorem, where the points 𝐴 and 𝐵 respectively lie on the imaginary and real axes, and the right angle is at the origin. (Contributed by Thierry Arnoux, 2-Nov-2025.) |
| Ref | Expression |
|---|---|
| pythagreim.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| pythagreim.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Ref | Expression |
|---|---|
| pythagreim | ⊢ (𝜑 → ((abs‘(𝐵 − (i · 𝐴)))↑2) = ((𝐴↑2) + (𝐵↑2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pythagreim.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 2 | pythagreim.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | cjreim2 15182 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (∗‘(𝐵 − (i · 𝐴))) = (𝐵 + (i · 𝐴))) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (∗‘(𝐵 − (i · 𝐴))) = (𝐵 + (i · 𝐴))) |
| 5 | 4 | oveq2d 7429 | . . 3 ⊢ (𝜑 → ((𝐵 − (i · 𝐴)) · (∗‘(𝐵 − (i · 𝐴)))) = ((𝐵 − (i · 𝐴)) · (𝐵 + (i · 𝐴)))) |
| 6 | 1 | recnd 11271 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 7 | ax-icn 11196 | . . . . . . 7 ⊢ i ∈ ℂ | |
| 8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝜑 → i ∈ ℂ) |
| 9 | 2 | recnd 11271 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 10 | 8, 9 | mulcld 11263 | . . . . 5 ⊢ (𝜑 → (i · 𝐴) ∈ ℂ) |
| 11 | 6, 10 | subcld 11602 | . . . 4 ⊢ (𝜑 → (𝐵 − (i · 𝐴)) ∈ ℂ) |
| 12 | 6, 10 | addcld 11262 | . . . 4 ⊢ (𝜑 → (𝐵 + (i · 𝐴)) ∈ ℂ) |
| 13 | 11, 12 | mulcomd 11264 | . . 3 ⊢ (𝜑 → ((𝐵 − (i · 𝐴)) · (𝐵 + (i · 𝐴))) = ((𝐵 + (i · 𝐴)) · (𝐵 − (i · 𝐴)))) |
| 14 | 5, 13 | eqtrd 2769 | . 2 ⊢ (𝜑 → ((𝐵 − (i · 𝐴)) · (∗‘(𝐵 − (i · 𝐴)))) = ((𝐵 + (i · 𝐴)) · (𝐵 − (i · 𝐴)))) |
| 15 | 11 | absvalsqd 15463 | . 2 ⊢ (𝜑 → ((abs‘(𝐵 − (i · 𝐴)))↑2) = ((𝐵 − (i · 𝐴)) · (∗‘(𝐵 − (i · 𝐴))))) |
| 16 | 8, 9 | sqmuld 14180 | . . . . . . 7 ⊢ (𝜑 → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2))) |
| 17 | i2 14223 | . . . . . . . 8 ⊢ (i↑2) = -1 | |
| 18 | 17 | oveq1i 7423 | . . . . . . 7 ⊢ ((i↑2) · (𝐴↑2)) = (-1 · (𝐴↑2)) |
| 19 | 16, 18 | eqtrdi 2785 | . . . . . 6 ⊢ (𝜑 → ((i · 𝐴)↑2) = (-1 · (𝐴↑2))) |
| 20 | 9 | sqcld 14166 | . . . . . . 7 ⊢ (𝜑 → (𝐴↑2) ∈ ℂ) |
| 21 | 20 | mulm1d 11697 | . . . . . 6 ⊢ (𝜑 → (-1 · (𝐴↑2)) = -(𝐴↑2)) |
| 22 | 19, 21 | eqtrd 2769 | . . . . 5 ⊢ (𝜑 → ((i · 𝐴)↑2) = -(𝐴↑2)) |
| 23 | 22 | oveq2d 7429 | . . . 4 ⊢ (𝜑 → ((𝐵↑2) − ((i · 𝐴)↑2)) = ((𝐵↑2) − -(𝐴↑2))) |
| 24 | 6 | sqcld 14166 | . . . . 5 ⊢ (𝜑 → (𝐵↑2) ∈ ℂ) |
| 25 | 24, 20 | subnegd 11609 | . . . 4 ⊢ (𝜑 → ((𝐵↑2) − -(𝐴↑2)) = ((𝐵↑2) + (𝐴↑2))) |
| 26 | 24, 20 | addcomd 11445 | . . . 4 ⊢ (𝜑 → ((𝐵↑2) + (𝐴↑2)) = ((𝐴↑2) + (𝐵↑2))) |
| 27 | 23, 25, 26 | 3eqtrd 2773 | . . 3 ⊢ (𝜑 → ((𝐵↑2) − ((i · 𝐴)↑2)) = ((𝐴↑2) + (𝐵↑2))) |
| 28 | subsq 14231 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → ((𝐵↑2) − ((i · 𝐴)↑2)) = ((𝐵 + (i · 𝐴)) · (𝐵 − (i · 𝐴)))) | |
| 29 | 6, 10, 28 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝐵↑2) − ((i · 𝐴)↑2)) = ((𝐵 + (i · 𝐴)) · (𝐵 − (i · 𝐴)))) |
| 30 | 27, 29 | eqtr3d 2771 | . 2 ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = ((𝐵 + (i · 𝐴)) · (𝐵 − (i · 𝐴)))) |
| 31 | 14, 15, 30 | 3eqtr4d 2779 | 1 ⊢ (𝜑 → ((abs‘(𝐵 − (i · 𝐴)))↑2) = ((𝐴↑2) + (𝐵↑2))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ‘cfv 6541 (class class class)co 7413 ℂcc 11135 ℝcr 11136 1c1 11138 ici 11139 + caddc 11140 · cmul 11142 − cmin 11474 -cneg 11475 2c2 12303 ↑cexp 14084 ∗ccj 15117 abscabs 15255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-sup 9464 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-n0 12510 df-z 12597 df-uz 12861 df-rp 13017 df-seq 14025 df-exp 14085 df-cj 15120 df-re 15121 df-im 15122 df-sqrt 15256 df-abs 15257 |
| This theorem is referenced by: iconstr 33746 |
| Copyright terms: Public domain | W3C validator |