| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pythagreim | Structured version Visualization version GIF version | ||
| Description: A simplified version of the Pythagorean theorem, where the points 𝐴 and 𝐵 respectively lie on the imaginary and real axes, and the right angle is at the origin. (Contributed by Thierry Arnoux, 2-Nov-2025.) |
| Ref | Expression |
|---|---|
| pythagreim.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| pythagreim.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Ref | Expression |
|---|---|
| pythagreim | ⊢ (𝜑 → ((abs‘(𝐵 − (i · 𝐴)))↑2) = ((𝐴↑2) + (𝐵↑2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pythagreim.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 2 | pythagreim.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | cjreim2 15063 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (∗‘(𝐵 − (i · 𝐴))) = (𝐵 + (i · 𝐴))) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (∗‘(𝐵 − (i · 𝐴))) = (𝐵 + (i · 𝐴))) |
| 5 | 4 | oveq2d 7357 | . . 3 ⊢ (𝜑 → ((𝐵 − (i · 𝐴)) · (∗‘(𝐵 − (i · 𝐴)))) = ((𝐵 − (i · 𝐴)) · (𝐵 + (i · 𝐴)))) |
| 6 | 1 | recnd 11135 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 7 | ax-icn 11060 | . . . . . . 7 ⊢ i ∈ ℂ | |
| 8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝜑 → i ∈ ℂ) |
| 9 | 2 | recnd 11135 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 10 | 8, 9 | mulcld 11127 | . . . . 5 ⊢ (𝜑 → (i · 𝐴) ∈ ℂ) |
| 11 | 6, 10 | subcld 11467 | . . . 4 ⊢ (𝜑 → (𝐵 − (i · 𝐴)) ∈ ℂ) |
| 12 | 6, 10 | addcld 11126 | . . . 4 ⊢ (𝜑 → (𝐵 + (i · 𝐴)) ∈ ℂ) |
| 13 | 11, 12 | mulcomd 11128 | . . 3 ⊢ (𝜑 → ((𝐵 − (i · 𝐴)) · (𝐵 + (i · 𝐴))) = ((𝐵 + (i · 𝐴)) · (𝐵 − (i · 𝐴)))) |
| 14 | 5, 13 | eqtrd 2766 | . 2 ⊢ (𝜑 → ((𝐵 − (i · 𝐴)) · (∗‘(𝐵 − (i · 𝐴)))) = ((𝐵 + (i · 𝐴)) · (𝐵 − (i · 𝐴)))) |
| 15 | 11 | absvalsqd 15347 | . 2 ⊢ (𝜑 → ((abs‘(𝐵 − (i · 𝐴)))↑2) = ((𝐵 − (i · 𝐴)) · (∗‘(𝐵 − (i · 𝐴))))) |
| 16 | 8, 9 | sqmuld 14060 | . . . . . . 7 ⊢ (𝜑 → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2))) |
| 17 | i2 14104 | . . . . . . . 8 ⊢ (i↑2) = -1 | |
| 18 | 17 | oveq1i 7351 | . . . . . . 7 ⊢ ((i↑2) · (𝐴↑2)) = (-1 · (𝐴↑2)) |
| 19 | 16, 18 | eqtrdi 2782 | . . . . . 6 ⊢ (𝜑 → ((i · 𝐴)↑2) = (-1 · (𝐴↑2))) |
| 20 | 9 | sqcld 14046 | . . . . . . 7 ⊢ (𝜑 → (𝐴↑2) ∈ ℂ) |
| 21 | 20 | mulm1d 11564 | . . . . . 6 ⊢ (𝜑 → (-1 · (𝐴↑2)) = -(𝐴↑2)) |
| 22 | 19, 21 | eqtrd 2766 | . . . . 5 ⊢ (𝜑 → ((i · 𝐴)↑2) = -(𝐴↑2)) |
| 23 | 22 | oveq2d 7357 | . . . 4 ⊢ (𝜑 → ((𝐵↑2) − ((i · 𝐴)↑2)) = ((𝐵↑2) − -(𝐴↑2))) |
| 24 | 6 | sqcld 14046 | . . . . 5 ⊢ (𝜑 → (𝐵↑2) ∈ ℂ) |
| 25 | 24, 20 | subnegd 11474 | . . . 4 ⊢ (𝜑 → ((𝐵↑2) − -(𝐴↑2)) = ((𝐵↑2) + (𝐴↑2))) |
| 26 | 24, 20 | addcomd 11310 | . . . 4 ⊢ (𝜑 → ((𝐵↑2) + (𝐴↑2)) = ((𝐴↑2) + (𝐵↑2))) |
| 27 | 23, 25, 26 | 3eqtrd 2770 | . . 3 ⊢ (𝜑 → ((𝐵↑2) − ((i · 𝐴)↑2)) = ((𝐴↑2) + (𝐵↑2))) |
| 28 | subsq 14112 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → ((𝐵↑2) − ((i · 𝐴)↑2)) = ((𝐵 + (i · 𝐴)) · (𝐵 − (i · 𝐴)))) | |
| 29 | 6, 10, 28 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝐵↑2) − ((i · 𝐴)↑2)) = ((𝐵 + (i · 𝐴)) · (𝐵 − (i · 𝐴)))) |
| 30 | 27, 29 | eqtr3d 2768 | . 2 ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = ((𝐵 + (i · 𝐴)) · (𝐵 − (i · 𝐴)))) |
| 31 | 14, 15, 30 | 3eqtr4d 2776 | 1 ⊢ (𝜑 → ((abs‘(𝐵 − (i · 𝐴)))↑2) = ((𝐴↑2) + (𝐵↑2))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6476 (class class class)co 7341 ℂcc 10999 ℝcr 11000 1c1 11002 ici 11003 + caddc 11004 · cmul 11006 − cmin 11339 -cneg 11340 2c2 12175 ↑cexp 13963 ∗ccj 14998 abscabs 15136 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-seq 13904 df-exp 13964 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 |
| This theorem is referenced by: iconstr 33771 |
| Copyright terms: Public domain | W3C validator |