![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmgpid | Structured version Visualization version GIF version |
Description: The group identity element of nonzero complex number multiplication is one. (Contributed by Steve Rodriguez, 23-Feb-2007.) (Revised by AV, 26-Aug-2021.) |
Ref | Expression |
---|---|
cnmgpabl.m | ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) |
Ref | Expression |
---|---|
cnmgpid | ⊢ (0g‘𝑀) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnring 20089 | . 2 ⊢ ℂfld ∈ Ring | |
2 | difss 3936 | . 2 ⊢ (ℂ ∖ {0}) ⊆ ℂ | |
3 | ax-1cn 10283 | . . 3 ⊢ 1 ∈ ℂ | |
4 | ax-1ne0 10294 | . . 3 ⊢ 1 ≠ 0 | |
5 | eldifsn 4507 | . . 3 ⊢ (1 ∈ (ℂ ∖ {0}) ↔ (1 ∈ ℂ ∧ 1 ≠ 0)) | |
6 | 3, 4, 5 | mpbir2an 703 | . 2 ⊢ 1 ∈ (ℂ ∖ {0}) |
7 | cnmgpabl.m | . . . 4 ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) | |
8 | cnfldbas 20071 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
9 | cnfld1 20092 | . . . 4 ⊢ 1 = (1r‘ℂfld) | |
10 | 7, 8, 9 | ringidss 18892 | . . 3 ⊢ ((ℂfld ∈ Ring ∧ (ℂ ∖ {0}) ⊆ ℂ ∧ 1 ∈ (ℂ ∖ {0})) → 1 = (0g‘𝑀)) |
11 | 10 | eqcomd 2806 | . 2 ⊢ ((ℂfld ∈ Ring ∧ (ℂ ∖ {0}) ⊆ ℂ ∧ 1 ∈ (ℂ ∖ {0})) → (0g‘𝑀) = 1) |
12 | 1, 2, 6, 11 | mp3an 1586 | 1 ⊢ (0g‘𝑀) = 1 |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ≠ wne 2972 ∖ cdif 3767 ⊆ wss 3770 {csn 4369 ‘cfv 6102 (class class class)co 6879 ℂcc 10223 0cc0 10225 1c1 10226 ↾s cress 16184 0gc0g 16414 mulGrpcmgp 18804 Ringcrg 18862 ℂfldccnfld 20067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-cnex 10281 ax-resscn 10282 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-addrcl 10286 ax-mulcl 10287 ax-mulrcl 10288 ax-mulcom 10289 ax-addass 10290 ax-mulass 10291 ax-distr 10292 ax-i2m1 10293 ax-1ne0 10294 ax-1rid 10295 ax-rnegex 10296 ax-rrecex 10297 ax-cnre 10298 ax-pre-lttri 10299 ax-pre-lttrn 10300 ax-pre-ltadd 10301 ax-pre-mulgt0 10302 ax-addf 10304 ax-mulf 10305 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-int 4669 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 df-ord 5945 df-on 5946 df-lim 5947 df-suc 5948 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-om 7301 df-1st 7402 df-2nd 7403 df-wrecs 7646 df-recs 7708 df-rdg 7746 df-1o 7800 df-oadd 7804 df-er 7983 df-en 8197 df-dom 8198 df-sdom 8199 df-fin 8200 df-pnf 10366 df-mnf 10367 df-xr 10368 df-ltxr 10369 df-le 10370 df-sub 10559 df-neg 10560 df-nn 11314 df-2 11375 df-3 11376 df-4 11377 df-5 11378 df-6 11379 df-7 11380 df-8 11381 df-9 11382 df-n0 11580 df-z 11666 df-dec 11783 df-uz 11930 df-fz 12580 df-struct 16185 df-ndx 16186 df-slot 16187 df-base 16189 df-sets 16190 df-ress 16191 df-plusg 16279 df-mulr 16280 df-starv 16281 df-tset 16285 df-ple 16286 df-ds 16288 df-unif 16289 df-0g 16416 df-mgm 17556 df-sgrp 17598 df-mnd 17609 df-grp 17740 df-cmn 18509 df-mgp 18805 df-ur 18817 df-ring 18864 df-cring 18865 df-cnfld 20068 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |