| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sqabs | Structured version Visualization version GIF version | ||
| Description: The squares of two reals are equal iff their absolute values are equal. (Contributed by NM, 6-Mar-2009.) |
| Ref | Expression |
|---|---|
| sqabs | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴↑2) = (𝐵↑2) ↔ (abs‘𝐴) = (abs‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resqcl 14049 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴↑2) ∈ ℝ) | |
| 2 | sqge0 14061 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 0 ≤ (𝐴↑2)) | |
| 3 | absid 15221 | . . . . 5 ⊢ (((𝐴↑2) ∈ ℝ ∧ 0 ≤ (𝐴↑2)) → (abs‘(𝐴↑2)) = (𝐴↑2)) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . . 4 ⊢ (𝐴 ∈ ℝ → (abs‘(𝐴↑2)) = (𝐴↑2)) |
| 5 | recn 11118 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 6 | 2nn0 12419 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 7 | absexp 15229 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 2 ∈ ℕ0) → (abs‘(𝐴↑2)) = ((abs‘𝐴)↑2)) | |
| 8 | 5, 6, 7 | sylancl 586 | . . . 4 ⊢ (𝐴 ∈ ℝ → (abs‘(𝐴↑2)) = ((abs‘𝐴)↑2)) |
| 9 | 4, 8 | eqtr3d 2766 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴↑2) = ((abs‘𝐴)↑2)) |
| 10 | resqcl 14049 | . . . . 5 ⊢ (𝐵 ∈ ℝ → (𝐵↑2) ∈ ℝ) | |
| 11 | sqge0 14061 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 0 ≤ (𝐵↑2)) | |
| 12 | absid 15221 | . . . . 5 ⊢ (((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2)) → (abs‘(𝐵↑2)) = (𝐵↑2)) | |
| 13 | 10, 11, 12 | syl2anc 584 | . . . 4 ⊢ (𝐵 ∈ ℝ → (abs‘(𝐵↑2)) = (𝐵↑2)) |
| 14 | recn 11118 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
| 15 | absexp 15229 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 2 ∈ ℕ0) → (abs‘(𝐵↑2)) = ((abs‘𝐵)↑2)) | |
| 16 | 14, 6, 15 | sylancl 586 | . . . 4 ⊢ (𝐵 ∈ ℝ → (abs‘(𝐵↑2)) = ((abs‘𝐵)↑2)) |
| 17 | 13, 16 | eqtr3d 2766 | . . 3 ⊢ (𝐵 ∈ ℝ → (𝐵↑2) = ((abs‘𝐵)↑2)) |
| 18 | 9, 17 | eqeqan12d 2743 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴↑2) = (𝐵↑2) ↔ ((abs‘𝐴)↑2) = ((abs‘𝐵)↑2))) |
| 19 | abscl 15203 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
| 20 | absge0 15212 | . . . . 5 ⊢ (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴)) | |
| 21 | 19, 20 | jca 511 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) |
| 22 | abscl 15203 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (abs‘𝐵) ∈ ℝ) | |
| 23 | absge0 15212 | . . . . 5 ⊢ (𝐵 ∈ ℂ → 0 ≤ (abs‘𝐵)) | |
| 24 | 22, 23 | jca 511 | . . . 4 ⊢ (𝐵 ∈ ℂ → ((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵))) |
| 25 | sq11 14056 | . . . 4 ⊢ ((((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) ∧ ((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵))) → (((abs‘𝐴)↑2) = ((abs‘𝐵)↑2) ↔ (abs‘𝐴) = (abs‘𝐵))) | |
| 26 | 21, 24, 25 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((abs‘𝐴)↑2) = ((abs‘𝐵)↑2) ↔ (abs‘𝐴) = (abs‘𝐵))) |
| 27 | 5, 14, 26 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((abs‘𝐴)↑2) = ((abs‘𝐵)↑2) ↔ (abs‘𝐴) = (abs‘𝐵))) |
| 28 | 18, 27 | bitrd 279 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴↑2) = (𝐵↑2) ↔ (abs‘𝐴) = (abs‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 ℝcr 11027 0cc0 11028 ≤ cle 11169 2c2 12201 ℕ0cn0 12402 ↑cexp 13986 abscabs 15159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 |
| This theorem is referenced by: coskpi 26448 |
| Copyright terms: Public domain | W3C validator |