Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sqabs | Structured version Visualization version GIF version |
Description: The squares of two reals are equal iff their absolute values are equal. (Contributed by NM, 6-Mar-2009.) |
Ref | Expression |
---|---|
sqabs | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴↑2) = (𝐵↑2) ↔ (abs‘𝐴) = (abs‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resqcl 13696 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴↑2) ∈ ℝ) | |
2 | sqge0 13707 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 0 ≤ (𝐴↑2)) | |
3 | absid 14860 | . . . . 5 ⊢ (((𝐴↑2) ∈ ℝ ∧ 0 ≤ (𝐴↑2)) → (abs‘(𝐴↑2)) = (𝐴↑2)) | |
4 | 1, 2, 3 | syl2anc 587 | . . . 4 ⊢ (𝐴 ∈ ℝ → (abs‘(𝐴↑2)) = (𝐴↑2)) |
5 | recn 10819 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
6 | 2nn0 12107 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
7 | absexp 14868 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 2 ∈ ℕ0) → (abs‘(𝐴↑2)) = ((abs‘𝐴)↑2)) | |
8 | 5, 6, 7 | sylancl 589 | . . . 4 ⊢ (𝐴 ∈ ℝ → (abs‘(𝐴↑2)) = ((abs‘𝐴)↑2)) |
9 | 4, 8 | eqtr3d 2779 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴↑2) = ((abs‘𝐴)↑2)) |
10 | resqcl 13696 | . . . . 5 ⊢ (𝐵 ∈ ℝ → (𝐵↑2) ∈ ℝ) | |
11 | sqge0 13707 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 0 ≤ (𝐵↑2)) | |
12 | absid 14860 | . . . . 5 ⊢ (((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2)) → (abs‘(𝐵↑2)) = (𝐵↑2)) | |
13 | 10, 11, 12 | syl2anc 587 | . . . 4 ⊢ (𝐵 ∈ ℝ → (abs‘(𝐵↑2)) = (𝐵↑2)) |
14 | recn 10819 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
15 | absexp 14868 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 2 ∈ ℕ0) → (abs‘(𝐵↑2)) = ((abs‘𝐵)↑2)) | |
16 | 14, 6, 15 | sylancl 589 | . . . 4 ⊢ (𝐵 ∈ ℝ → (abs‘(𝐵↑2)) = ((abs‘𝐵)↑2)) |
17 | 13, 16 | eqtr3d 2779 | . . 3 ⊢ (𝐵 ∈ ℝ → (𝐵↑2) = ((abs‘𝐵)↑2)) |
18 | 9, 17 | eqeqan12d 2751 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴↑2) = (𝐵↑2) ↔ ((abs‘𝐴)↑2) = ((abs‘𝐵)↑2))) |
19 | abscl 14842 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
20 | absge0 14851 | . . . . 5 ⊢ (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴)) | |
21 | 19, 20 | jca 515 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) |
22 | abscl 14842 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (abs‘𝐵) ∈ ℝ) | |
23 | absge0 14851 | . . . . 5 ⊢ (𝐵 ∈ ℂ → 0 ≤ (abs‘𝐵)) | |
24 | 22, 23 | jca 515 | . . . 4 ⊢ (𝐵 ∈ ℂ → ((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵))) |
25 | sq11 13702 | . . . 4 ⊢ ((((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) ∧ ((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵))) → (((abs‘𝐴)↑2) = ((abs‘𝐵)↑2) ↔ (abs‘𝐴) = (abs‘𝐵))) | |
26 | 21, 24, 25 | syl2an 599 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((abs‘𝐴)↑2) = ((abs‘𝐵)↑2) ↔ (abs‘𝐴) = (abs‘𝐵))) |
27 | 5, 14, 26 | syl2an 599 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((abs‘𝐴)↑2) = ((abs‘𝐵)↑2) ↔ (abs‘𝐴) = (abs‘𝐵))) |
28 | 18, 27 | bitrd 282 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴↑2) = (𝐵↑2) ↔ (abs‘𝐴) = (abs‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 class class class wbr 5053 ‘cfv 6380 (class class class)co 7213 ℂcc 10727 ℝcr 10728 0cc0 10729 ≤ cle 10868 2c2 11885 ℕ0cn0 12090 ↑cexp 13635 abscabs 14797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-sup 9058 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-n0 12091 df-z 12177 df-uz 12439 df-rp 12587 df-seq 13575 df-exp 13636 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 |
This theorem is referenced by: coskpi 25412 |
Copyright terms: Public domain | W3C validator |