| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > stgredgel | Structured version Visualization version GIF version | ||
| Description: An edge of the star graph SN. (Contributed by AV, 11-Sep-2025.) |
| Ref | Expression |
|---|---|
| stgredgel | ⊢ (𝑁 ∈ ℕ0 → (𝐸 ∈ (Edg‘(StarGr‘𝑁)) ↔ (𝐸 ⊆ (0...𝑁) ∧ ∃𝑥 ∈ (1...𝑁)𝐸 = {0, 𝑥}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stgredg 47959 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (Edg‘(StarGr‘𝑁)) = {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}) | |
| 2 | 1 | eleq2d 2815 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝐸 ∈ (Edg‘(StarGr‘𝑁)) ↔ 𝐸 ∈ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})) |
| 3 | eqeq1 2734 | . . . . 5 ⊢ (𝑒 = 𝐸 → (𝑒 = {0, 𝑥} ↔ 𝐸 = {0, 𝑥})) | |
| 4 | 3 | rexbidv 3158 | . . . 4 ⊢ (𝑒 = 𝐸 → (∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥} ↔ ∃𝑥 ∈ (1...𝑁)𝐸 = {0, 𝑥})) |
| 5 | 4 | elrab 3662 | . . 3 ⊢ (𝐸 ∈ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}} ↔ (𝐸 ∈ 𝒫 (0...𝑁) ∧ ∃𝑥 ∈ (1...𝑁)𝐸 = {0, 𝑥})) |
| 6 | prex 5395 | . . . . . . 7 ⊢ {0, 𝑥} ∈ V | |
| 7 | eleq1 2817 | . . . . . . 7 ⊢ (𝐸 = {0, 𝑥} → (𝐸 ∈ V ↔ {0, 𝑥} ∈ V)) | |
| 8 | 6, 7 | mpbiri 258 | . . . . . 6 ⊢ (𝐸 = {0, 𝑥} → 𝐸 ∈ V) |
| 9 | elpwg 4569 | . . . . . 6 ⊢ (𝐸 ∈ V → (𝐸 ∈ 𝒫 (0...𝑁) ↔ 𝐸 ⊆ (0...𝑁))) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝐸 = {0, 𝑥} → (𝐸 ∈ 𝒫 (0...𝑁) ↔ 𝐸 ⊆ (0...𝑁))) |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ (1...𝑁) → (𝐸 = {0, 𝑥} → (𝐸 ∈ 𝒫 (0...𝑁) ↔ 𝐸 ⊆ (0...𝑁)))) |
| 12 | 11 | rexlimiv 3128 | . . 3 ⊢ (∃𝑥 ∈ (1...𝑁)𝐸 = {0, 𝑥} → (𝐸 ∈ 𝒫 (0...𝑁) ↔ 𝐸 ⊆ (0...𝑁))) |
| 13 | 5, 12 | bianim 576 | . 2 ⊢ (𝐸 ∈ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}} ↔ (𝐸 ⊆ (0...𝑁) ∧ ∃𝑥 ∈ (1...𝑁)𝐸 = {0, 𝑥})) |
| 14 | 2, 13 | bitrdi 287 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝐸 ∈ (Edg‘(StarGr‘𝑁)) ↔ (𝐸 ⊆ (0...𝑁) ∧ ∃𝑥 ∈ (1...𝑁)𝐸 = {0, 𝑥}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 {crab 3408 Vcvv 3450 ⊆ wss 3917 𝒫 cpw 4566 {cpr 4594 ‘cfv 6514 (class class class)co 7390 0cc0 11075 1c1 11076 ℕ0cn0 12449 ...cfz 13475 Edgcedg 28981 StarGrcstgr 47954 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-xnn0 12523 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-hash 14303 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-edgf 28923 df-iedg 28933 df-edg 28982 df-stgr 47955 |
| This theorem is referenced by: stgredgiun 47961 stgrnbgr0 47967 isubgr3stgrlem6 47974 isubgr3stgrlem7 47975 |
| Copyright terms: Public domain | W3C validator |