| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > stgredgel | Structured version Visualization version GIF version | ||
| Description: An edge of the star graph SN. (Contributed by AV, 11-Sep-2025.) |
| Ref | Expression |
|---|---|
| stgredgel | ⊢ (𝑁 ∈ ℕ0 → (𝐸 ∈ (Edg‘(StarGr‘𝑁)) ↔ (𝐸 ⊆ (0...𝑁) ∧ ∃𝑥 ∈ (1...𝑁)𝐸 = {0, 𝑥}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stgredg 47916 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (Edg‘(StarGr‘𝑁)) = {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}) | |
| 2 | 1 | eleq2d 2820 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝐸 ∈ (Edg‘(StarGr‘𝑁)) ↔ 𝐸 ∈ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})) |
| 3 | eqeq1 2739 | . . . . 5 ⊢ (𝑒 = 𝐸 → (𝑒 = {0, 𝑥} ↔ 𝐸 = {0, 𝑥})) | |
| 4 | 3 | rexbidv 3164 | . . . 4 ⊢ (𝑒 = 𝐸 → (∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥} ↔ ∃𝑥 ∈ (1...𝑁)𝐸 = {0, 𝑥})) |
| 5 | 4 | elrab 3671 | . . 3 ⊢ (𝐸 ∈ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}} ↔ (𝐸 ∈ 𝒫 (0...𝑁) ∧ ∃𝑥 ∈ (1...𝑁)𝐸 = {0, 𝑥})) |
| 6 | prex 5407 | . . . . . . 7 ⊢ {0, 𝑥} ∈ V | |
| 7 | eleq1 2822 | . . . . . . 7 ⊢ (𝐸 = {0, 𝑥} → (𝐸 ∈ V ↔ {0, 𝑥} ∈ V)) | |
| 8 | 6, 7 | mpbiri 258 | . . . . . 6 ⊢ (𝐸 = {0, 𝑥} → 𝐸 ∈ V) |
| 9 | elpwg 4578 | . . . . . 6 ⊢ (𝐸 ∈ V → (𝐸 ∈ 𝒫 (0...𝑁) ↔ 𝐸 ⊆ (0...𝑁))) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝐸 = {0, 𝑥} → (𝐸 ∈ 𝒫 (0...𝑁) ↔ 𝐸 ⊆ (0...𝑁))) |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ (1...𝑁) → (𝐸 = {0, 𝑥} → (𝐸 ∈ 𝒫 (0...𝑁) ↔ 𝐸 ⊆ (0...𝑁)))) |
| 12 | 11 | rexlimiv 3134 | . . 3 ⊢ (∃𝑥 ∈ (1...𝑁)𝐸 = {0, 𝑥} → (𝐸 ∈ 𝒫 (0...𝑁) ↔ 𝐸 ⊆ (0...𝑁))) |
| 13 | 5, 12 | bianim 576 | . 2 ⊢ (𝐸 ∈ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}} ↔ (𝐸 ⊆ (0...𝑁) ∧ ∃𝑥 ∈ (1...𝑁)𝐸 = {0, 𝑥})) |
| 14 | 2, 13 | bitrdi 287 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝐸 ∈ (Edg‘(StarGr‘𝑁)) ↔ (𝐸 ⊆ (0...𝑁) ∧ ∃𝑥 ∈ (1...𝑁)𝐸 = {0, 𝑥}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 {crab 3415 Vcvv 3459 ⊆ wss 3926 𝒫 cpw 4575 {cpr 4603 ‘cfv 6530 (class class class)co 7403 0cc0 11127 1c1 11128 ℕ0cn0 12499 ...cfz 13522 Edgcedg 28972 StarGrcstgr 47911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-oadd 8482 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-dju 9913 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-xnn0 12573 df-z 12587 df-dec 12707 df-uz 12851 df-fz 13523 df-hash 14347 df-struct 17164 df-slot 17199 df-ndx 17211 df-base 17227 df-edgf 28914 df-iedg 28924 df-edg 28973 df-stgr 47912 |
| This theorem is referenced by: stgredgiun 47918 stgrnbgr0 47924 isubgr3stgrlem6 47931 isubgr3stgrlem7 47932 |
| Copyright terms: Public domain | W3C validator |