![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > stgredgiun | Structured version Visualization version GIF version |
Description: The edges of the star graph SN as indexed union. (Contributed by AV, 29-Sep-2025.) |
Ref | Expression |
---|---|
stgredgiun | ⊢ (𝑁 ∈ ℕ0 → (Edg‘(StarGr‘𝑁)) = ∪ 𝑥 ∈ (1...𝑁){{0, 𝑥}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stgredgel 47859 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑒 ∈ (Edg‘(StarGr‘𝑁)) ↔ (𝑒 ⊆ (0...𝑁) ∧ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}))) | |
2 | eliun 4999 | . . . . 5 ⊢ (𝑒 ∈ ∪ 𝑥 ∈ (1...𝑁){{0, 𝑥}} ↔ ∃𝑥 ∈ (1...𝑁)𝑒 ∈ {{0, 𝑥}}) | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑒 ∈ ∪ 𝑥 ∈ (1...𝑁){{0, 𝑥}} ↔ ∃𝑥 ∈ (1...𝑁)𝑒 ∈ {{0, 𝑥}})) |
4 | velsn 4646 | . . . . . 6 ⊢ (𝑒 ∈ {{0, 𝑥}} ↔ 𝑒 = {0, 𝑥}) | |
5 | 0elfz 13660 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) | |
6 | 5 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (1...𝑁)) → 0 ∈ (0...𝑁)) |
7 | fz1ssfz0 13659 | . . . . . . . . . . 11 ⊢ (1...𝑁) ⊆ (0...𝑁) | |
8 | 7 | sseli 3990 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (1...𝑁) → 𝑥 ∈ (0...𝑁)) |
9 | 8 | adantl 481 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (1...𝑁)) → 𝑥 ∈ (0...𝑁)) |
10 | 6, 9 | prssd 4826 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (1...𝑁)) → {0, 𝑥} ⊆ (0...𝑁)) |
11 | sseq1 4020 | . . . . . . . 8 ⊢ (𝑒 = {0, 𝑥} → (𝑒 ⊆ (0...𝑁) ↔ {0, 𝑥} ⊆ (0...𝑁))) | |
12 | 10, 11 | syl5ibrcom 247 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (1...𝑁)) → (𝑒 = {0, 𝑥} → 𝑒 ⊆ (0...𝑁))) |
13 | 12 | pm4.71rd 562 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (1...𝑁)) → (𝑒 = {0, 𝑥} ↔ (𝑒 ⊆ (0...𝑁) ∧ 𝑒 = {0, 𝑥}))) |
14 | 4, 13 | bitr2id 284 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (1...𝑁)) → ((𝑒 ⊆ (0...𝑁) ∧ 𝑒 = {0, 𝑥}) ↔ 𝑒 ∈ {{0, 𝑥}})) |
15 | 14 | rexbidva 3174 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (∃𝑥 ∈ (1...𝑁)(𝑒 ⊆ (0...𝑁) ∧ 𝑒 = {0, 𝑥}) ↔ ∃𝑥 ∈ (1...𝑁)𝑒 ∈ {{0, 𝑥}})) |
16 | r19.42v 3188 | . . . . 5 ⊢ (∃𝑥 ∈ (1...𝑁)(𝑒 ⊆ (0...𝑁) ∧ 𝑒 = {0, 𝑥}) ↔ (𝑒 ⊆ (0...𝑁) ∧ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥})) | |
17 | 16 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (∃𝑥 ∈ (1...𝑁)(𝑒 ⊆ (0...𝑁) ∧ 𝑒 = {0, 𝑥}) ↔ (𝑒 ⊆ (0...𝑁) ∧ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}))) |
18 | 3, 15, 17 | 3bitr2rd 308 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝑒 ⊆ (0...𝑁) ∧ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}) ↔ 𝑒 ∈ ∪ 𝑥 ∈ (1...𝑁){{0, 𝑥}})) |
19 | 1, 18 | bitrd 279 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑒 ∈ (Edg‘(StarGr‘𝑁)) ↔ 𝑒 ∈ ∪ 𝑥 ∈ (1...𝑁){{0, 𝑥}})) |
20 | 19 | eqrdv 2732 | 1 ⊢ (𝑁 ∈ ℕ0 → (Edg‘(StarGr‘𝑁)) = ∪ 𝑥 ∈ (1...𝑁){{0, 𝑥}}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∃wrex 3067 ⊆ wss 3962 {csn 4630 {cpr 4632 ∪ ciun 4995 ‘cfv 6562 (class class class)co 7430 0cc0 11152 1c1 11153 ℕ0cn0 12523 ...cfz 13543 Edgcedg 29078 StarGrcstgr 47853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-oadd 8508 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-dju 9938 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-xnn0 12597 df-z 12611 df-dec 12731 df-uz 12876 df-fz 13544 df-hash 14366 df-struct 17180 df-slot 17215 df-ndx 17227 df-base 17245 df-edgf 29018 df-iedg 29030 df-edg 29079 df-stgr 47854 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |