Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stgredgiun Structured version   Visualization version   GIF version

Theorem stgredgiun 47988
Description: The edges of the star graph SN as indexed union. (Contributed by AV, 29-Sep-2025.)
Assertion
Ref Expression
stgredgiun (𝑁 ∈ ℕ0 → (Edg‘(StarGr‘𝑁)) = 𝑥 ∈ (1...𝑁){{0, 𝑥}})
Distinct variable group:   𝑥,𝑁

Proof of Theorem stgredgiun
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 stgredgel 47987 . . 3 (𝑁 ∈ ℕ0 → (𝑒 ∈ (Edg‘(StarGr‘𝑁)) ↔ (𝑒 ⊆ (0...𝑁) ∧ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥})))
2 eliun 4945 . . . . 5 (𝑒 𝑥 ∈ (1...𝑁){{0, 𝑥}} ↔ ∃𝑥 ∈ (1...𝑁)𝑒 ∈ {{0, 𝑥}})
32a1i 11 . . . 4 (𝑁 ∈ ℕ0 → (𝑒 𝑥 ∈ (1...𝑁){{0, 𝑥}} ↔ ∃𝑥 ∈ (1...𝑁)𝑒 ∈ {{0, 𝑥}}))
4 velsn 4592 . . . . . 6 (𝑒 ∈ {{0, 𝑥}} ↔ 𝑒 = {0, 𝑥})
5 0elfz 13521 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
65adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑥 ∈ (1...𝑁)) → 0 ∈ (0...𝑁))
7 fz1ssfz0 13520 . . . . . . . . . . 11 (1...𝑁) ⊆ (0...𝑁)
87sseli 3930 . . . . . . . . . 10 (𝑥 ∈ (1...𝑁) → 𝑥 ∈ (0...𝑁))
98adantl 481 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑥 ∈ (1...𝑁)) → 𝑥 ∈ (0...𝑁))
106, 9prssd 4774 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑥 ∈ (1...𝑁)) → {0, 𝑥} ⊆ (0...𝑁))
11 sseq1 3960 . . . . . . . 8 (𝑒 = {0, 𝑥} → (𝑒 ⊆ (0...𝑁) ↔ {0, 𝑥} ⊆ (0...𝑁)))
1210, 11syl5ibrcom 247 . . . . . . 7 ((𝑁 ∈ ℕ0𝑥 ∈ (1...𝑁)) → (𝑒 = {0, 𝑥} → 𝑒 ⊆ (0...𝑁)))
1312pm4.71rd 562 . . . . . 6 ((𝑁 ∈ ℕ0𝑥 ∈ (1...𝑁)) → (𝑒 = {0, 𝑥} ↔ (𝑒 ⊆ (0...𝑁) ∧ 𝑒 = {0, 𝑥})))
144, 13bitr2id 284 . . . . 5 ((𝑁 ∈ ℕ0𝑥 ∈ (1...𝑁)) → ((𝑒 ⊆ (0...𝑁) ∧ 𝑒 = {0, 𝑥}) ↔ 𝑒 ∈ {{0, 𝑥}}))
1514rexbidva 3154 . . . 4 (𝑁 ∈ ℕ0 → (∃𝑥 ∈ (1...𝑁)(𝑒 ⊆ (0...𝑁) ∧ 𝑒 = {0, 𝑥}) ↔ ∃𝑥 ∈ (1...𝑁)𝑒 ∈ {{0, 𝑥}}))
16 r19.42v 3164 . . . . 5 (∃𝑥 ∈ (1...𝑁)(𝑒 ⊆ (0...𝑁) ∧ 𝑒 = {0, 𝑥}) ↔ (𝑒 ⊆ (0...𝑁) ∧ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}))
1716a1i 11 . . . 4 (𝑁 ∈ ℕ0 → (∃𝑥 ∈ (1...𝑁)(𝑒 ⊆ (0...𝑁) ∧ 𝑒 = {0, 𝑥}) ↔ (𝑒 ⊆ (0...𝑁) ∧ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥})))
183, 15, 173bitr2rd 308 . . 3 (𝑁 ∈ ℕ0 → ((𝑒 ⊆ (0...𝑁) ∧ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}) ↔ 𝑒 𝑥 ∈ (1...𝑁){{0, 𝑥}}))
191, 18bitrd 279 . 2 (𝑁 ∈ ℕ0 → (𝑒 ∈ (Edg‘(StarGr‘𝑁)) ↔ 𝑒 𝑥 ∈ (1...𝑁){{0, 𝑥}}))
2019eqrdv 2729 1 (𝑁 ∈ ℕ0 → (Edg‘(StarGr‘𝑁)) = 𝑥 ∈ (1...𝑁){{0, 𝑥}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  wss 3902  {csn 4576  {cpr 4578   ciun 4941  cfv 6481  (class class class)co 7346  0cc0 11003  1c1 11004  0cn0 12378  ...cfz 13404  Edgcedg 29023  StarGrcstgr 47981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9791  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-xnn0 12452  df-z 12466  df-dec 12586  df-uz 12730  df-fz 13405  df-hash 14235  df-struct 17055  df-slot 17090  df-ndx 17102  df-base 17118  df-edgf 28965  df-iedg 28975  df-edg 29024  df-stgr 47982
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator