| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > stgredgiun | Structured version Visualization version GIF version | ||
| Description: The edges of the star graph SN as indexed union. (Contributed by AV, 29-Sep-2025.) |
| Ref | Expression |
|---|---|
| stgredgiun | ⊢ (𝑁 ∈ ℕ0 → (Edg‘(StarGr‘𝑁)) = ∪ 𝑥 ∈ (1...𝑁){{0, 𝑥}}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stgredgel 47940 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑒 ∈ (Edg‘(StarGr‘𝑁)) ↔ (𝑒 ⊆ (0...𝑁) ∧ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}))) | |
| 2 | eliun 4948 | . . . . 5 ⊢ (𝑒 ∈ ∪ 𝑥 ∈ (1...𝑁){{0, 𝑥}} ↔ ∃𝑥 ∈ (1...𝑁)𝑒 ∈ {{0, 𝑥}}) | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑒 ∈ ∪ 𝑥 ∈ (1...𝑁){{0, 𝑥}} ↔ ∃𝑥 ∈ (1...𝑁)𝑒 ∈ {{0, 𝑥}})) |
| 4 | velsn 4595 | . . . . . 6 ⊢ (𝑒 ∈ {{0, 𝑥}} ↔ 𝑒 = {0, 𝑥}) | |
| 5 | 0elfz 13545 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) | |
| 6 | 5 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (1...𝑁)) → 0 ∈ (0...𝑁)) |
| 7 | fz1ssfz0 13544 | . . . . . . . . . . 11 ⊢ (1...𝑁) ⊆ (0...𝑁) | |
| 8 | 7 | sseli 3933 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (1...𝑁) → 𝑥 ∈ (0...𝑁)) |
| 9 | 8 | adantl 481 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (1...𝑁)) → 𝑥 ∈ (0...𝑁)) |
| 10 | 6, 9 | prssd 4776 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (1...𝑁)) → {0, 𝑥} ⊆ (0...𝑁)) |
| 11 | sseq1 3963 | . . . . . . . 8 ⊢ (𝑒 = {0, 𝑥} → (𝑒 ⊆ (0...𝑁) ↔ {0, 𝑥} ⊆ (0...𝑁))) | |
| 12 | 10, 11 | syl5ibrcom 247 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (1...𝑁)) → (𝑒 = {0, 𝑥} → 𝑒 ⊆ (0...𝑁))) |
| 13 | 12 | pm4.71rd 562 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (1...𝑁)) → (𝑒 = {0, 𝑥} ↔ (𝑒 ⊆ (0...𝑁) ∧ 𝑒 = {0, 𝑥}))) |
| 14 | 4, 13 | bitr2id 284 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (1...𝑁)) → ((𝑒 ⊆ (0...𝑁) ∧ 𝑒 = {0, 𝑥}) ↔ 𝑒 ∈ {{0, 𝑥}})) |
| 15 | 14 | rexbidva 3151 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (∃𝑥 ∈ (1...𝑁)(𝑒 ⊆ (0...𝑁) ∧ 𝑒 = {0, 𝑥}) ↔ ∃𝑥 ∈ (1...𝑁)𝑒 ∈ {{0, 𝑥}})) |
| 16 | r19.42v 3161 | . . . . 5 ⊢ (∃𝑥 ∈ (1...𝑁)(𝑒 ⊆ (0...𝑁) ∧ 𝑒 = {0, 𝑥}) ↔ (𝑒 ⊆ (0...𝑁) ∧ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥})) | |
| 17 | 16 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (∃𝑥 ∈ (1...𝑁)(𝑒 ⊆ (0...𝑁) ∧ 𝑒 = {0, 𝑥}) ↔ (𝑒 ⊆ (0...𝑁) ∧ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}))) |
| 18 | 3, 15, 17 | 3bitr2rd 308 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝑒 ⊆ (0...𝑁) ∧ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}) ↔ 𝑒 ∈ ∪ 𝑥 ∈ (1...𝑁){{0, 𝑥}})) |
| 19 | 1, 18 | bitrd 279 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑒 ∈ (Edg‘(StarGr‘𝑁)) ↔ 𝑒 ∈ ∪ 𝑥 ∈ (1...𝑁){{0, 𝑥}})) |
| 20 | 19 | eqrdv 2727 | 1 ⊢ (𝑁 ∈ ℕ0 → (Edg‘(StarGr‘𝑁)) = ∪ 𝑥 ∈ (1...𝑁){{0, 𝑥}}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3905 {csn 4579 {cpr 4581 ∪ ciun 4944 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 ℕ0cn0 12402 ...cfz 13428 Edgcedg 29010 StarGrcstgr 47934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-oadd 8399 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-xnn0 12476 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-hash 14256 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17139 df-edgf 28952 df-iedg 28962 df-edg 29011 df-stgr 47935 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |