| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > stgredgiun | Structured version Visualization version GIF version | ||
| Description: The edges of the star graph SN as indexed union. (Contributed by AV, 29-Sep-2025.) |
| Ref | Expression |
|---|---|
| stgredgiun | ⊢ (𝑁 ∈ ℕ0 → (Edg‘(StarGr‘𝑁)) = ∪ 𝑥 ∈ (1...𝑁){{0, 𝑥}}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stgredgel 47969 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑒 ∈ (Edg‘(StarGr‘𝑁)) ↔ (𝑒 ⊆ (0...𝑁) ∧ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}))) | |
| 2 | eliun 4971 | . . . . 5 ⊢ (𝑒 ∈ ∪ 𝑥 ∈ (1...𝑁){{0, 𝑥}} ↔ ∃𝑥 ∈ (1...𝑁)𝑒 ∈ {{0, 𝑥}}) | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑒 ∈ ∪ 𝑥 ∈ (1...𝑁){{0, 𝑥}} ↔ ∃𝑥 ∈ (1...𝑁)𝑒 ∈ {{0, 𝑥}})) |
| 4 | velsn 4617 | . . . . . 6 ⊢ (𝑒 ∈ {{0, 𝑥}} ↔ 𝑒 = {0, 𝑥}) | |
| 5 | 0elfz 13641 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) | |
| 6 | 5 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (1...𝑁)) → 0 ∈ (0...𝑁)) |
| 7 | fz1ssfz0 13640 | . . . . . . . . . . 11 ⊢ (1...𝑁) ⊆ (0...𝑁) | |
| 8 | 7 | sseli 3954 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (1...𝑁) → 𝑥 ∈ (0...𝑁)) |
| 9 | 8 | adantl 481 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (1...𝑁)) → 𝑥 ∈ (0...𝑁)) |
| 10 | 6, 9 | prssd 4798 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (1...𝑁)) → {0, 𝑥} ⊆ (0...𝑁)) |
| 11 | sseq1 3984 | . . . . . . . 8 ⊢ (𝑒 = {0, 𝑥} → (𝑒 ⊆ (0...𝑁) ↔ {0, 𝑥} ⊆ (0...𝑁))) | |
| 12 | 10, 11 | syl5ibrcom 247 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (1...𝑁)) → (𝑒 = {0, 𝑥} → 𝑒 ⊆ (0...𝑁))) |
| 13 | 12 | pm4.71rd 562 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (1...𝑁)) → (𝑒 = {0, 𝑥} ↔ (𝑒 ⊆ (0...𝑁) ∧ 𝑒 = {0, 𝑥}))) |
| 14 | 4, 13 | bitr2id 284 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (1...𝑁)) → ((𝑒 ⊆ (0...𝑁) ∧ 𝑒 = {0, 𝑥}) ↔ 𝑒 ∈ {{0, 𝑥}})) |
| 15 | 14 | rexbidva 3162 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (∃𝑥 ∈ (1...𝑁)(𝑒 ⊆ (0...𝑁) ∧ 𝑒 = {0, 𝑥}) ↔ ∃𝑥 ∈ (1...𝑁)𝑒 ∈ {{0, 𝑥}})) |
| 16 | r19.42v 3176 | . . . . 5 ⊢ (∃𝑥 ∈ (1...𝑁)(𝑒 ⊆ (0...𝑁) ∧ 𝑒 = {0, 𝑥}) ↔ (𝑒 ⊆ (0...𝑁) ∧ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥})) | |
| 17 | 16 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (∃𝑥 ∈ (1...𝑁)(𝑒 ⊆ (0...𝑁) ∧ 𝑒 = {0, 𝑥}) ↔ (𝑒 ⊆ (0...𝑁) ∧ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}))) |
| 18 | 3, 15, 17 | 3bitr2rd 308 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝑒 ⊆ (0...𝑁) ∧ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}) ↔ 𝑒 ∈ ∪ 𝑥 ∈ (1...𝑁){{0, 𝑥}})) |
| 19 | 1, 18 | bitrd 279 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑒 ∈ (Edg‘(StarGr‘𝑁)) ↔ 𝑒 ∈ ∪ 𝑥 ∈ (1...𝑁){{0, 𝑥}})) |
| 20 | 19 | eqrdv 2733 | 1 ⊢ (𝑁 ∈ ℕ0 → (Edg‘(StarGr‘𝑁)) = ∪ 𝑥 ∈ (1...𝑁){{0, 𝑥}}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 ⊆ wss 3926 {csn 4601 {cpr 4603 ∪ ciun 4967 ‘cfv 6531 (class class class)co 7405 0cc0 11129 1c1 11130 ℕ0cn0 12501 ...cfz 13524 Edgcedg 29026 StarGrcstgr 47963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-dju 9915 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-xnn0 12575 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-hash 14349 df-struct 17166 df-slot 17201 df-ndx 17213 df-base 17229 df-edgf 28968 df-iedg 28978 df-edg 29027 df-stgr 47964 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |