| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > stgrnbgr0 | Structured version Visualization version GIF version | ||
| Description: All vertices of a star graph SN except the center are in the (open) neighborhood of the center. (Contributed by AV, 12-Sep-2025.) |
| Ref | Expression |
|---|---|
| stgrvtx0.g | ⊢ 𝐺 = (StarGr‘𝑁) |
| stgrvtx0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| stgrnbgr0 | ⊢ (𝑁 ∈ ℕ0 → (𝐺 NeighbVtx 0) = (𝑉 ∖ {0})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stgrvtx0.g | . . . 4 ⊢ 𝐺 = (StarGr‘𝑁) | |
| 2 | stgrvtx0.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | 1, 2 | stgrvtx0 47956 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ 𝑉) |
| 4 | eqid 2729 | . . . 4 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 5 | 2, 4 | dfnbgr2 29282 | . . 3 ⊢ (0 ∈ 𝑉 → (𝐺 NeighbVtx 0) = {𝑥 ∈ (𝑉 ∖ {0}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(0 ∈ 𝑒 ∧ 𝑥 ∈ 𝑒)}) |
| 6 | 3, 5 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝐺 NeighbVtx 0) = {𝑥 ∈ (𝑉 ∖ {0}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(0 ∈ 𝑒 ∧ 𝑥 ∈ 𝑒)}) |
| 7 | eleq2 2817 | . . . . 5 ⊢ (𝑒 = {0, 𝑥} → (0 ∈ 𝑒 ↔ 0 ∈ {0, 𝑥})) | |
| 8 | eleq2 2817 | . . . . 5 ⊢ (𝑒 = {0, 𝑥} → (𝑥 ∈ 𝑒 ↔ 𝑥 ∈ {0, 𝑥})) | |
| 9 | 7, 8 | anbi12d 632 | . . . 4 ⊢ (𝑒 = {0, 𝑥} → ((0 ∈ 𝑒 ∧ 𝑥 ∈ 𝑒) ↔ (0 ∈ {0, 𝑥} ∧ 𝑥 ∈ {0, 𝑥}))) |
| 10 | 0elfz 13527 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) | |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑉 ∖ {0})) → 0 ∈ (0...𝑁)) |
| 12 | fz1ssfz0 13526 | . . . . . . 7 ⊢ (1...𝑁) ⊆ (0...𝑁) | |
| 13 | 1 | fveq2i 6825 | . . . . . . . . . . . 12 ⊢ (Vtx‘𝐺) = (Vtx‘(StarGr‘𝑁)) |
| 14 | 2, 13 | eqtri 2752 | . . . . . . . . . . 11 ⊢ 𝑉 = (Vtx‘(StarGr‘𝑁)) |
| 15 | stgrvtx 47948 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ0 → (Vtx‘(StarGr‘𝑁)) = (0...𝑁)) | |
| 16 | 14, 15 | eqtrid 2776 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ0 → 𝑉 = (0...𝑁)) |
| 17 | 16 | difeq1d 4076 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → (𝑉 ∖ {0}) = ((0...𝑁) ∖ {0})) |
| 18 | fz0dif1 13509 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ0 → ((0...𝑁) ∖ {0}) = (1...𝑁)) | |
| 19 | 18 | eqimssd 3992 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → ((0...𝑁) ∖ {0}) ⊆ (1...𝑁)) |
| 20 | 17, 19 | eqsstrd 3970 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (𝑉 ∖ {0}) ⊆ (1...𝑁)) |
| 21 | 20 | sselda 3935 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑉 ∖ {0})) → 𝑥 ∈ (1...𝑁)) |
| 22 | 12, 21 | sselid 3933 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑉 ∖ {0})) → 𝑥 ∈ (0...𝑁)) |
| 23 | 11, 22 | prssd 4773 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑉 ∖ {0})) → {0, 𝑥} ⊆ (0...𝑁)) |
| 24 | preq2 4686 | . . . . . . 7 ⊢ (𝑛 = 𝑥 → {0, 𝑛} = {0, 𝑥}) | |
| 25 | 24 | eqeq2d 2740 | . . . . . 6 ⊢ (𝑛 = 𝑥 → ({0, 𝑥} = {0, 𝑛} ↔ {0, 𝑥} = {0, 𝑥})) |
| 26 | eqidd 2730 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑉 ∖ {0})) → {0, 𝑥} = {0, 𝑥}) | |
| 27 | 25, 21, 26 | rspcedvdw 3580 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑉 ∖ {0})) → ∃𝑛 ∈ (1...𝑁){0, 𝑥} = {0, 𝑛}) |
| 28 | 1 | fveq2i 6825 | . . . . . . 7 ⊢ (Edg‘𝐺) = (Edg‘(StarGr‘𝑁)) |
| 29 | 28 | eleq2i 2820 | . . . . . 6 ⊢ ({0, 𝑥} ∈ (Edg‘𝐺) ↔ {0, 𝑥} ∈ (Edg‘(StarGr‘𝑁))) |
| 30 | stgredgel 47951 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → ({0, 𝑥} ∈ (Edg‘(StarGr‘𝑁)) ↔ ({0, 𝑥} ⊆ (0...𝑁) ∧ ∃𝑛 ∈ (1...𝑁){0, 𝑥} = {0, 𝑛}))) | |
| 31 | 30 | adantr 480 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑉 ∖ {0})) → ({0, 𝑥} ∈ (Edg‘(StarGr‘𝑁)) ↔ ({0, 𝑥} ⊆ (0...𝑁) ∧ ∃𝑛 ∈ (1...𝑁){0, 𝑥} = {0, 𝑛}))) |
| 32 | 29, 31 | bitrid 283 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑉 ∖ {0})) → ({0, 𝑥} ∈ (Edg‘𝐺) ↔ ({0, 𝑥} ⊆ (0...𝑁) ∧ ∃𝑛 ∈ (1...𝑁){0, 𝑥} = {0, 𝑛}))) |
| 33 | 23, 27, 32 | mpbir2and 713 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑉 ∖ {0})) → {0, 𝑥} ∈ (Edg‘𝐺)) |
| 34 | prid2g 4713 | . . . . . 6 ⊢ (𝑥 ∈ (𝑉 ∖ {0}) → 𝑥 ∈ {0, 𝑥}) | |
| 35 | 34 | adantl 481 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑉 ∖ {0})) → 𝑥 ∈ {0, 𝑥}) |
| 36 | c0ex 11109 | . . . . . 6 ⊢ 0 ∈ V | |
| 37 | 36 | prid1 4714 | . . . . 5 ⊢ 0 ∈ {0, 𝑥} |
| 38 | 35, 37 | jctil 519 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑉 ∖ {0})) → (0 ∈ {0, 𝑥} ∧ 𝑥 ∈ {0, 𝑥})) |
| 39 | 9, 33, 38 | rspcedvdw 3580 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑉 ∖ {0})) → ∃𝑒 ∈ (Edg‘𝐺)(0 ∈ 𝑒 ∧ 𝑥 ∈ 𝑒)) |
| 40 | 39 | rabeqcda 3406 | . 2 ⊢ (𝑁 ∈ ℕ0 → {𝑥 ∈ (𝑉 ∖ {0}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(0 ∈ 𝑒 ∧ 𝑥 ∈ 𝑒)} = (𝑉 ∖ {0})) |
| 41 | 6, 40 | eqtrd 2764 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝐺 NeighbVtx 0) = (𝑉 ∖ {0})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3394 ∖ cdif 3900 ⊆ wss 3903 {csn 4577 {cpr 4579 ‘cfv 6482 (class class class)co 7349 0cc0 11009 1c1 11010 ℕ0cn0 12384 ...cfz 13410 Vtxcvtx 28941 Edgcedg 28992 NeighbVtx cnbgr 29277 StarGrcstgr 47945 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-oadd 8392 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-dju 9797 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-xnn0 12458 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-hash 14238 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-edgf 28934 df-vtx 28943 df-iedg 28944 df-edg 28993 df-nbgr 29278 df-stgr 47946 |
| This theorem is referenced by: stgrclnbgr0 47959 |
| Copyright terms: Public domain | W3C validator |