| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > stgrnbgr0 | Structured version Visualization version GIF version | ||
| Description: All vertices of a star graph SN except the center are in the (open) neighborhood of the center. (Contributed by AV, 12-Sep-2025.) |
| Ref | Expression |
|---|---|
| stgrvtx0.g | ⊢ 𝐺 = (StarGr‘𝑁) |
| stgrvtx0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| stgrnbgr0 | ⊢ (𝑁 ∈ ℕ0 → (𝐺 NeighbVtx 0) = (𝑉 ∖ {0})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stgrvtx0.g | . . . 4 ⊢ 𝐺 = (StarGr‘𝑁) | |
| 2 | stgrvtx0.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | 1, 2 | stgrvtx0 48061 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ 𝑉) |
| 4 | eqid 2731 | . . . 4 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 5 | 2, 4 | dfnbgr2 29315 | . . 3 ⊢ (0 ∈ 𝑉 → (𝐺 NeighbVtx 0) = {𝑥 ∈ (𝑉 ∖ {0}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(0 ∈ 𝑒 ∧ 𝑥 ∈ 𝑒)}) |
| 6 | 3, 5 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝐺 NeighbVtx 0) = {𝑥 ∈ (𝑉 ∖ {0}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(0 ∈ 𝑒 ∧ 𝑥 ∈ 𝑒)}) |
| 7 | eleq2 2820 | . . . . 5 ⊢ (𝑒 = {0, 𝑥} → (0 ∈ 𝑒 ↔ 0 ∈ {0, 𝑥})) | |
| 8 | eleq2 2820 | . . . . 5 ⊢ (𝑒 = {0, 𝑥} → (𝑥 ∈ 𝑒 ↔ 𝑥 ∈ {0, 𝑥})) | |
| 9 | 7, 8 | anbi12d 632 | . . . 4 ⊢ (𝑒 = {0, 𝑥} → ((0 ∈ 𝑒 ∧ 𝑥 ∈ 𝑒) ↔ (0 ∈ {0, 𝑥} ∧ 𝑥 ∈ {0, 𝑥}))) |
| 10 | 0elfz 13524 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) | |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑉 ∖ {0})) → 0 ∈ (0...𝑁)) |
| 12 | fz1ssfz0 13523 | . . . . . . 7 ⊢ (1...𝑁) ⊆ (0...𝑁) | |
| 13 | 1 | fveq2i 6825 | . . . . . . . . . . . 12 ⊢ (Vtx‘𝐺) = (Vtx‘(StarGr‘𝑁)) |
| 14 | 2, 13 | eqtri 2754 | . . . . . . . . . . 11 ⊢ 𝑉 = (Vtx‘(StarGr‘𝑁)) |
| 15 | stgrvtx 48053 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ0 → (Vtx‘(StarGr‘𝑁)) = (0...𝑁)) | |
| 16 | 14, 15 | eqtrid 2778 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ0 → 𝑉 = (0...𝑁)) |
| 17 | 16 | difeq1d 4072 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → (𝑉 ∖ {0}) = ((0...𝑁) ∖ {0})) |
| 18 | fz0dif1 13506 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ0 → ((0...𝑁) ∖ {0}) = (1...𝑁)) | |
| 19 | 18 | eqimssd 3986 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → ((0...𝑁) ∖ {0}) ⊆ (1...𝑁)) |
| 20 | 17, 19 | eqsstrd 3964 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (𝑉 ∖ {0}) ⊆ (1...𝑁)) |
| 21 | 20 | sselda 3929 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑉 ∖ {0})) → 𝑥 ∈ (1...𝑁)) |
| 22 | 12, 21 | sselid 3927 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑉 ∖ {0})) → 𝑥 ∈ (0...𝑁)) |
| 23 | 11, 22 | prssd 4771 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑉 ∖ {0})) → {0, 𝑥} ⊆ (0...𝑁)) |
| 24 | preq2 4684 | . . . . . . 7 ⊢ (𝑛 = 𝑥 → {0, 𝑛} = {0, 𝑥}) | |
| 25 | 24 | eqeq2d 2742 | . . . . . 6 ⊢ (𝑛 = 𝑥 → ({0, 𝑥} = {0, 𝑛} ↔ {0, 𝑥} = {0, 𝑥})) |
| 26 | eqidd 2732 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑉 ∖ {0})) → {0, 𝑥} = {0, 𝑥}) | |
| 27 | 25, 21, 26 | rspcedvdw 3575 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑉 ∖ {0})) → ∃𝑛 ∈ (1...𝑁){0, 𝑥} = {0, 𝑛}) |
| 28 | 1 | fveq2i 6825 | . . . . . . 7 ⊢ (Edg‘𝐺) = (Edg‘(StarGr‘𝑁)) |
| 29 | 28 | eleq2i 2823 | . . . . . 6 ⊢ ({0, 𝑥} ∈ (Edg‘𝐺) ↔ {0, 𝑥} ∈ (Edg‘(StarGr‘𝑁))) |
| 30 | stgredgel 48056 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → ({0, 𝑥} ∈ (Edg‘(StarGr‘𝑁)) ↔ ({0, 𝑥} ⊆ (0...𝑁) ∧ ∃𝑛 ∈ (1...𝑁){0, 𝑥} = {0, 𝑛}))) | |
| 31 | 30 | adantr 480 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑉 ∖ {0})) → ({0, 𝑥} ∈ (Edg‘(StarGr‘𝑁)) ↔ ({0, 𝑥} ⊆ (0...𝑁) ∧ ∃𝑛 ∈ (1...𝑁){0, 𝑥} = {0, 𝑛}))) |
| 32 | 29, 31 | bitrid 283 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑉 ∖ {0})) → ({0, 𝑥} ∈ (Edg‘𝐺) ↔ ({0, 𝑥} ⊆ (0...𝑁) ∧ ∃𝑛 ∈ (1...𝑁){0, 𝑥} = {0, 𝑛}))) |
| 33 | 23, 27, 32 | mpbir2and 713 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑉 ∖ {0})) → {0, 𝑥} ∈ (Edg‘𝐺)) |
| 34 | prid2g 4711 | . . . . . 6 ⊢ (𝑥 ∈ (𝑉 ∖ {0}) → 𝑥 ∈ {0, 𝑥}) | |
| 35 | 34 | adantl 481 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑉 ∖ {0})) → 𝑥 ∈ {0, 𝑥}) |
| 36 | c0ex 11106 | . . . . . 6 ⊢ 0 ∈ V | |
| 37 | 36 | prid1 4712 | . . . . 5 ⊢ 0 ∈ {0, 𝑥} |
| 38 | 35, 37 | jctil 519 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑉 ∖ {0})) → (0 ∈ {0, 𝑥} ∧ 𝑥 ∈ {0, 𝑥})) |
| 39 | 9, 33, 38 | rspcedvdw 3575 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑉 ∖ {0})) → ∃𝑒 ∈ (Edg‘𝐺)(0 ∈ 𝑒 ∧ 𝑥 ∈ 𝑒)) |
| 40 | 39 | rabeqcda 3406 | . 2 ⊢ (𝑁 ∈ ℕ0 → {𝑥 ∈ (𝑉 ∖ {0}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(0 ∈ 𝑒 ∧ 𝑥 ∈ 𝑒)} = (𝑉 ∖ {0})) |
| 41 | 6, 40 | eqtrd 2766 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝐺 NeighbVtx 0) = (𝑉 ∖ {0})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 {crab 3395 ∖ cdif 3894 ⊆ wss 3897 {csn 4573 {cpr 4575 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 ℕ0cn0 12381 ...cfz 13407 Vtxcvtx 28974 Edgcedg 29025 NeighbVtx cnbgr 29310 StarGrcstgr 48050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-xnn0 12455 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-hash 14238 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-edgf 28967 df-vtx 28976 df-iedg 28977 df-edg 29026 df-nbgr 29311 df-stgr 48051 |
| This theorem is referenced by: stgrclnbgr0 48064 |
| Copyright terms: Public domain | W3C validator |