| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > stgrnbgr0 | Structured version Visualization version GIF version | ||
| Description: All vertices of a star graph SN except the center are in the (open) neighborhood of the center. (Contributed by AV, 12-Sep-2025.) |
| Ref | Expression |
|---|---|
| stgrvtx0.g | ⊢ 𝐺 = (StarGr‘𝑁) |
| stgrvtx0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| stgrnbgr0 | ⊢ (𝑁 ∈ ℕ0 → (𝐺 NeighbVtx 0) = (𝑉 ∖ {0})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stgrvtx0.g | . . . 4 ⊢ 𝐺 = (StarGr‘𝑁) | |
| 2 | stgrvtx0.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | 1, 2 | stgrvtx0 47922 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ 𝑉) |
| 4 | eqid 2735 | . . . 4 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 5 | 2, 4 | dfnbgr2 29262 | . . 3 ⊢ (0 ∈ 𝑉 → (𝐺 NeighbVtx 0) = {𝑥 ∈ (𝑉 ∖ {0}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(0 ∈ 𝑒 ∧ 𝑥 ∈ 𝑒)}) |
| 6 | 3, 5 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝐺 NeighbVtx 0) = {𝑥 ∈ (𝑉 ∖ {0}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(0 ∈ 𝑒 ∧ 𝑥 ∈ 𝑒)}) |
| 7 | eleq2 2823 | . . . . 5 ⊢ (𝑒 = {0, 𝑥} → (0 ∈ 𝑒 ↔ 0 ∈ {0, 𝑥})) | |
| 8 | eleq2 2823 | . . . . 5 ⊢ (𝑒 = {0, 𝑥} → (𝑥 ∈ 𝑒 ↔ 𝑥 ∈ {0, 𝑥})) | |
| 9 | 7, 8 | anbi12d 632 | . . . 4 ⊢ (𝑒 = {0, 𝑥} → ((0 ∈ 𝑒 ∧ 𝑥 ∈ 𝑒) ↔ (0 ∈ {0, 𝑥} ∧ 𝑥 ∈ {0, 𝑥}))) |
| 10 | 0elfz 13639 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) | |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑉 ∖ {0})) → 0 ∈ (0...𝑁)) |
| 12 | fz1ssfz0 13638 | . . . . . . 7 ⊢ (1...𝑁) ⊆ (0...𝑁) | |
| 13 | 1 | fveq2i 6878 | . . . . . . . . . . . 12 ⊢ (Vtx‘𝐺) = (Vtx‘(StarGr‘𝑁)) |
| 14 | 2, 13 | eqtri 2758 | . . . . . . . . . . 11 ⊢ 𝑉 = (Vtx‘(StarGr‘𝑁)) |
| 15 | stgrvtx 47914 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ0 → (Vtx‘(StarGr‘𝑁)) = (0...𝑁)) | |
| 16 | 14, 15 | eqtrid 2782 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ0 → 𝑉 = (0...𝑁)) |
| 17 | 16 | difeq1d 4100 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → (𝑉 ∖ {0}) = ((0...𝑁) ∖ {0})) |
| 18 | fz0dif1 13621 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ0 → ((0...𝑁) ∖ {0}) = (1...𝑁)) | |
| 19 | 18 | eqimssd 4015 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → ((0...𝑁) ∖ {0}) ⊆ (1...𝑁)) |
| 20 | 17, 19 | eqsstrd 3993 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (𝑉 ∖ {0}) ⊆ (1...𝑁)) |
| 21 | 20 | sselda 3958 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑉 ∖ {0})) → 𝑥 ∈ (1...𝑁)) |
| 22 | 12, 21 | sselid 3956 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑉 ∖ {0})) → 𝑥 ∈ (0...𝑁)) |
| 23 | 11, 22 | prssd 4798 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑉 ∖ {0})) → {0, 𝑥} ⊆ (0...𝑁)) |
| 24 | preq2 4710 | . . . . . . 7 ⊢ (𝑛 = 𝑥 → {0, 𝑛} = {0, 𝑥}) | |
| 25 | 24 | eqeq2d 2746 | . . . . . 6 ⊢ (𝑛 = 𝑥 → ({0, 𝑥} = {0, 𝑛} ↔ {0, 𝑥} = {0, 𝑥})) |
| 26 | eqidd 2736 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑉 ∖ {0})) → {0, 𝑥} = {0, 𝑥}) | |
| 27 | 25, 21, 26 | rspcedvdw 3604 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑉 ∖ {0})) → ∃𝑛 ∈ (1...𝑁){0, 𝑥} = {0, 𝑛}) |
| 28 | 1 | fveq2i 6878 | . . . . . . 7 ⊢ (Edg‘𝐺) = (Edg‘(StarGr‘𝑁)) |
| 29 | 28 | eleq2i 2826 | . . . . . 6 ⊢ ({0, 𝑥} ∈ (Edg‘𝐺) ↔ {0, 𝑥} ∈ (Edg‘(StarGr‘𝑁))) |
| 30 | stgredgel 47917 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → ({0, 𝑥} ∈ (Edg‘(StarGr‘𝑁)) ↔ ({0, 𝑥} ⊆ (0...𝑁) ∧ ∃𝑛 ∈ (1...𝑁){0, 𝑥} = {0, 𝑛}))) | |
| 31 | 30 | adantr 480 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑉 ∖ {0})) → ({0, 𝑥} ∈ (Edg‘(StarGr‘𝑁)) ↔ ({0, 𝑥} ⊆ (0...𝑁) ∧ ∃𝑛 ∈ (1...𝑁){0, 𝑥} = {0, 𝑛}))) |
| 32 | 29, 31 | bitrid 283 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑉 ∖ {0})) → ({0, 𝑥} ∈ (Edg‘𝐺) ↔ ({0, 𝑥} ⊆ (0...𝑁) ∧ ∃𝑛 ∈ (1...𝑁){0, 𝑥} = {0, 𝑛}))) |
| 33 | 23, 27, 32 | mpbir2and 713 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑉 ∖ {0})) → {0, 𝑥} ∈ (Edg‘𝐺)) |
| 34 | prid2g 4737 | . . . . . 6 ⊢ (𝑥 ∈ (𝑉 ∖ {0}) → 𝑥 ∈ {0, 𝑥}) | |
| 35 | 34 | adantl 481 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑉 ∖ {0})) → 𝑥 ∈ {0, 𝑥}) |
| 36 | c0ex 11227 | . . . . . 6 ⊢ 0 ∈ V | |
| 37 | 36 | prid1 4738 | . . . . 5 ⊢ 0 ∈ {0, 𝑥} |
| 38 | 35, 37 | jctil 519 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑉 ∖ {0})) → (0 ∈ {0, 𝑥} ∧ 𝑥 ∈ {0, 𝑥})) |
| 39 | 9, 33, 38 | rspcedvdw 3604 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑉 ∖ {0})) → ∃𝑒 ∈ (Edg‘𝐺)(0 ∈ 𝑒 ∧ 𝑥 ∈ 𝑒)) |
| 40 | 39 | rabeqcda 3427 | . 2 ⊢ (𝑁 ∈ ℕ0 → {𝑥 ∈ (𝑉 ∖ {0}) ∣ ∃𝑒 ∈ (Edg‘𝐺)(0 ∈ 𝑒 ∧ 𝑥 ∈ 𝑒)} = (𝑉 ∖ {0})) |
| 41 | 6, 40 | eqtrd 2770 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝐺 NeighbVtx 0) = (𝑉 ∖ {0})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 {crab 3415 ∖ cdif 3923 ⊆ wss 3926 {csn 4601 {cpr 4603 ‘cfv 6530 (class class class)co 7403 0cc0 11127 1c1 11128 ℕ0cn0 12499 ...cfz 13522 Vtxcvtx 28921 Edgcedg 28972 NeighbVtx cnbgr 29257 StarGrcstgr 47911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-oadd 8482 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-dju 9913 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-xnn0 12573 df-z 12587 df-dec 12707 df-uz 12851 df-fz 13523 df-hash 14347 df-struct 17164 df-slot 17199 df-ndx 17211 df-base 17227 df-edgf 28914 df-vtx 28923 df-iedg 28924 df-edg 28973 df-nbgr 29258 df-stgr 47912 |
| This theorem is referenced by: stgrclnbgr0 47925 |
| Copyright terms: Public domain | W3C validator |