Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones5 Structured version   Visualization version   GIF version

Theorem sticksstones5 39775
Description: Count the number of strictly monotonely increasing functions on finite domains and codomains. (Contributed by metakunt, 28-Sep-2024.)
Hypotheses
Ref Expression
sticksstones5.1 (𝜑𝑁 ∈ ℕ0)
sticksstones5.2 (𝜑𝐾 ∈ ℕ0)
sticksstones5.3 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
Assertion
Ref Expression
sticksstones5 (𝜑 → (♯‘𝐴) = (𝑁C𝐾))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐾,𝑥,𝑦   𝑓,𝑁,𝑥,𝑦   𝜑,𝑓,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem sticksstones5
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 sticksstones5.1 . . . 4 (𝜑𝑁 ∈ ℕ0)
2 sticksstones5.2 . . . 4 (𝜑𝐾 ∈ ℕ0)
3 eqid 2736 . . . 4 {𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾} = {𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾}
4 sticksstones5.3 . . . 4 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
51, 2, 3, 4sticksstones4 39774 . . 3 (𝜑𝐴 ≈ {𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾})
6 hasheni 13879 . . 3 (𝐴 ≈ {𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾} → (♯‘𝐴) = (♯‘{𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾}))
75, 6syl 17 . 2 (𝜑 → (♯‘𝐴) = (♯‘{𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾}))
8 fzfid 13511 . . . . 5 (𝜑 → (1...𝑁) ∈ Fin)
92nn0zd 12245 . . . . 5 (𝜑𝐾 ∈ ℤ)
10 hashbc 13982 . . . . 5 (((1...𝑁) ∈ Fin ∧ 𝐾 ∈ ℤ) → ((♯‘(1...𝑁))C𝐾) = (♯‘{𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾}))
118, 9, 10syl2anc 587 . . . 4 (𝜑 → ((♯‘(1...𝑁))C𝐾) = (♯‘{𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾}))
1211eqcomd 2742 . . 3 (𝜑 → (♯‘{𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾}) = ((♯‘(1...𝑁))C𝐾))
13 hashfz1 13877 . . . . 5 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
141, 13syl 17 . . . 4 (𝜑 → (♯‘(1...𝑁)) = 𝑁)
1514oveq1d 7206 . . 3 (𝜑 → ((♯‘(1...𝑁))C𝐾) = (𝑁C𝐾))
1612, 15eqtrd 2771 . 2 (𝜑 → (♯‘{𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾}) = (𝑁C𝐾))
177, 16eqtrd 2771 1 (𝜑 → (♯‘𝐴) = (𝑁C𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  {cab 2714  wral 3051  {crab 3055  𝒫 cpw 4499   class class class wbr 5039  wf 6354  cfv 6358  (class class class)co 7191  cen 8601  Fincfn 8604  1c1 10695   < clt 10832  0cn0 12055  cz 12141  ...cfz 13060  Ccbc 13833  chash 13861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-oadd 8184  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-sup 9036  df-inf 9037  df-oi 9104  df-dju 9482  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-n0 12056  df-z 12142  df-uz 12404  df-rp 12552  df-fz 13061  df-seq 13540  df-fac 13805  df-bc 13834  df-hash 13862
This theorem is referenced by:  sticksstones14  39785
  Copyright terms: Public domain W3C validator