Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones5 Structured version   Visualization version   GIF version

Theorem sticksstones5 41674
Description: Count the number of strictly monotonely increasing functions on finite domains and codomains. (Contributed by metakunt, 28-Sep-2024.)
Hypotheses
Ref Expression
sticksstones5.1 (𝜑𝑁 ∈ ℕ0)
sticksstones5.2 (𝜑𝐾 ∈ ℕ0)
sticksstones5.3 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
Assertion
Ref Expression
sticksstones5 (𝜑 → (♯‘𝐴) = (𝑁C𝐾))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐾,𝑥,𝑦   𝑓,𝑁,𝑥,𝑦   𝜑,𝑓,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem sticksstones5
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 sticksstones5.1 . . . 4 (𝜑𝑁 ∈ ℕ0)
2 sticksstones5.2 . . . 4 (𝜑𝐾 ∈ ℕ0)
3 eqid 2725 . . . 4 {𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾} = {𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾}
4 sticksstones5.3 . . . 4 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
51, 2, 3, 4sticksstones4 41673 . . 3 (𝜑𝐴 ≈ {𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾})
6 hasheni 14334 . . 3 (𝐴 ≈ {𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾} → (♯‘𝐴) = (♯‘{𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾}))
75, 6syl 17 . 2 (𝜑 → (♯‘𝐴) = (♯‘{𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾}))
8 fzfid 13965 . . . . 5 (𝜑 → (1...𝑁) ∈ Fin)
92nn0zd 12609 . . . . 5 (𝜑𝐾 ∈ ℤ)
10 hashbc 14439 . . . . 5 (((1...𝑁) ∈ Fin ∧ 𝐾 ∈ ℤ) → ((♯‘(1...𝑁))C𝐾) = (♯‘{𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾}))
118, 9, 10syl2anc 582 . . . 4 (𝜑 → ((♯‘(1...𝑁))C𝐾) = (♯‘{𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾}))
1211eqcomd 2731 . . 3 (𝜑 → (♯‘{𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾}) = ((♯‘(1...𝑁))C𝐾))
13 hashfz1 14332 . . . . 5 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
141, 13syl 17 . . . 4 (𝜑 → (♯‘(1...𝑁)) = 𝑁)
1514oveq1d 7428 . . 3 (𝜑 → ((♯‘(1...𝑁))C𝐾) = (𝑁C𝐾))
1612, 15eqtrd 2765 . 2 (𝜑 → (♯‘{𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾}) = (𝑁C𝐾))
177, 16eqtrd 2765 1 (𝜑 → (♯‘𝐴) = (𝑁C𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  {cab 2702  wral 3051  {crab 3419  𝒫 cpw 4599   class class class wbr 5144  wf 6539  cfv 6543  (class class class)co 7413  cen 8954  Fincfn 8957  1c1 11134   < clt 11273  0cn0 12497  cz 12583  ...cfz 13511  Ccbc 14288  chash 14316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9460  df-inf 9461  df-oi 9528  df-dju 9919  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-n0 12498  df-z 12584  df-uz 12848  df-rp 13002  df-fz 13512  df-seq 13994  df-fac 14260  df-bc 14289  df-hash 14317
This theorem is referenced by:  sticksstones14  41684
  Copyright terms: Public domain W3C validator