![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sticksstones5 | Structured version Visualization version GIF version |
Description: Count the number of strictly monotonely increasing functions on finite domains and codomains. (Contributed by metakunt, 28-Sep-2024.) |
Ref | Expression |
---|---|
sticksstones5.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
sticksstones5.2 | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
sticksstones5.3 | ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} |
Ref | Expression |
---|---|
sticksstones5 | ⊢ (𝜑 → (♯‘𝐴) = (𝑁C𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sticksstones5.1 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
2 | sticksstones5.2 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
3 | eqid 2725 | . . . 4 ⊢ {𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾} = {𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾} | |
4 | sticksstones5.3 | . . . 4 ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} | |
5 | 1, 2, 3, 4 | sticksstones4 41673 | . . 3 ⊢ (𝜑 → 𝐴 ≈ {𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾}) |
6 | hasheni 14334 | . . 3 ⊢ (𝐴 ≈ {𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾} → (♯‘𝐴) = (♯‘{𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾})) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → (♯‘𝐴) = (♯‘{𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾})) |
8 | fzfid 13965 | . . . . 5 ⊢ (𝜑 → (1...𝑁) ∈ Fin) | |
9 | 2 | nn0zd 12609 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
10 | hashbc 14439 | . . . . 5 ⊢ (((1...𝑁) ∈ Fin ∧ 𝐾 ∈ ℤ) → ((♯‘(1...𝑁))C𝐾) = (♯‘{𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾})) | |
11 | 8, 9, 10 | syl2anc 582 | . . . 4 ⊢ (𝜑 → ((♯‘(1...𝑁))C𝐾) = (♯‘{𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾})) |
12 | 11 | eqcomd 2731 | . . 3 ⊢ (𝜑 → (♯‘{𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾}) = ((♯‘(1...𝑁))C𝐾)) |
13 | hashfz1 14332 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) | |
14 | 1, 13 | syl 17 | . . . 4 ⊢ (𝜑 → (♯‘(1...𝑁)) = 𝑁) |
15 | 14 | oveq1d 7428 | . . 3 ⊢ (𝜑 → ((♯‘(1...𝑁))C𝐾) = (𝑁C𝐾)) |
16 | 12, 15 | eqtrd 2765 | . 2 ⊢ (𝜑 → (♯‘{𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾}) = (𝑁C𝐾)) |
17 | 7, 16 | eqtrd 2765 | 1 ⊢ (𝜑 → (♯‘𝐴) = (𝑁C𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {cab 2702 ∀wral 3051 {crab 3419 𝒫 cpw 4599 class class class wbr 5144 ⟶wf 6539 ‘cfv 6543 (class class class)co 7413 ≈ cen 8954 Fincfn 8957 1c1 11134 < clt 11273 ℕ0cn0 12497 ℤcz 12583 ...cfz 13511 Ccbc 14288 ♯chash 14316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9460 df-inf 9461 df-oi 9528 df-dju 9919 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-n0 12498 df-z 12584 df-uz 12848 df-rp 13002 df-fz 13512 df-seq 13994 df-fac 14260 df-bc 14289 df-hash 14317 |
This theorem is referenced by: sticksstones14 41684 |
Copyright terms: Public domain | W3C validator |