Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sticksstones5 | Structured version Visualization version GIF version |
Description: Count the number of strictly monotonely increasing functions on finite domains and codomains. (Contributed by metakunt, 28-Sep-2024.) |
Ref | Expression |
---|---|
sticksstones5.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
sticksstones5.2 | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
sticksstones5.3 | ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} |
Ref | Expression |
---|---|
sticksstones5 | ⊢ (𝜑 → (♯‘𝐴) = (𝑁C𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sticksstones5.1 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
2 | sticksstones5.2 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
3 | eqid 2736 | . . . 4 ⊢ {𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾} = {𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾} | |
4 | sticksstones5.3 | . . . 4 ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} | |
5 | 1, 2, 3, 4 | sticksstones4 40413 | . . 3 ⊢ (𝜑 → 𝐴 ≈ {𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾}) |
6 | hasheni 14164 | . . 3 ⊢ (𝐴 ≈ {𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾} → (♯‘𝐴) = (♯‘{𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾})) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → (♯‘𝐴) = (♯‘{𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾})) |
8 | fzfid 13795 | . . . . 5 ⊢ (𝜑 → (1...𝑁) ∈ Fin) | |
9 | 2 | nn0zd 12526 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
10 | hashbc 14266 | . . . . 5 ⊢ (((1...𝑁) ∈ Fin ∧ 𝐾 ∈ ℤ) → ((♯‘(1...𝑁))C𝐾) = (♯‘{𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾})) | |
11 | 8, 9, 10 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((♯‘(1...𝑁))C𝐾) = (♯‘{𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾})) |
12 | 11 | eqcomd 2742 | . . 3 ⊢ (𝜑 → (♯‘{𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾}) = ((♯‘(1...𝑁))C𝐾)) |
13 | hashfz1 14162 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) | |
14 | 1, 13 | syl 17 | . . . 4 ⊢ (𝜑 → (♯‘(1...𝑁)) = 𝑁) |
15 | 14 | oveq1d 7353 | . . 3 ⊢ (𝜑 → ((♯‘(1...𝑁))C𝐾) = (𝑁C𝐾)) |
16 | 12, 15 | eqtrd 2776 | . 2 ⊢ (𝜑 → (♯‘{𝑠 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑠) = 𝐾}) = (𝑁C𝐾)) |
17 | 7, 16 | eqtrd 2776 | 1 ⊢ (𝜑 → (♯‘𝐴) = (𝑁C𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 {cab 2713 ∀wral 3061 {crab 3403 𝒫 cpw 4548 class class class wbr 5093 ⟶wf 6476 ‘cfv 6480 (class class class)co 7338 ≈ cen 8802 Fincfn 8805 1c1 10974 < clt 11111 ℕ0cn0 12335 ℤcz 12421 ...cfz 13341 Ccbc 14118 ♯chash 14146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 ax-pre-sup 11051 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-int 4896 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-se 5577 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-isom 6489 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-om 7782 df-1st 7900 df-2nd 7901 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-1o 8368 df-oadd 8372 df-er 8570 df-en 8806 df-dom 8807 df-sdom 8808 df-fin 8809 df-sup 9300 df-inf 9301 df-oi 9368 df-dju 9759 df-card 9797 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-div 11735 df-nn 12076 df-n0 12336 df-z 12422 df-uz 12685 df-rp 12833 df-fz 13342 df-seq 13824 df-fac 14090 df-bc 14119 df-hash 14147 |
This theorem is referenced by: sticksstones14 40424 |
Copyright terms: Public domain | W3C validator |