MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpolysum Structured version   Visualization version   GIF version

Theorem bpolysum 16058
Description: A sum for Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.) (Proof shortened by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
bpolysum ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) = (𝑋𝑁))
Distinct variable groups:   𝑘,𝑁   𝑘,𝑋

Proof of Theorem bpolysum
StepHypRef Expression
1 simpl 482 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → 𝑁 ∈ ℕ0)
2 nn0uz 12887 . . . 4 0 = (ℤ‘0)
31, 2eleqtrdi 2843 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → 𝑁 ∈ (ℤ‘0))
4 elfzelz 13531 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ)
5 bccl 14330 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁C𝑘) ∈ ℕ0)
61, 4, 5syl2an 596 . . . . 5 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℕ0)
76nn0cnd 12557 . . . 4 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℂ)
8 elfznn0 13627 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
9 simpr 484 . . . . . 6 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → 𝑋 ∈ ℂ)
10 bpolycl 16057 . . . . . 6 ((𝑘 ∈ ℕ0𝑋 ∈ ℂ) → (𝑘 BernPoly 𝑋) ∈ ℂ)
118, 9, 10syl2anr 597 . . . . 5 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑘 BernPoly 𝑋) ∈ ℂ)
12 fznn0sub 13563 . . . . . . . 8 (𝑘 ∈ (0...𝑁) → (𝑁𝑘) ∈ ℕ0)
1312adantl 481 . . . . . . 7 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁𝑘) ∈ ℕ0)
14 nn0p1nn 12533 . . . . . . 7 ((𝑁𝑘) ∈ ℕ0 → ((𝑁𝑘) + 1) ∈ ℕ)
1513, 14syl 17 . . . . . 6 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) + 1) ∈ ℕ)
1615nncnd 12249 . . . . 5 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) + 1) ∈ ℂ)
1715nnne0d 12283 . . . . 5 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) + 1) ≠ 0)
1811, 16, 17divcld 12010 . . . 4 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)) ∈ ℂ)
197, 18mulcld 11248 . . 3 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) ∈ ℂ)
20 oveq2 7408 . . . 4 (𝑘 = 𝑁 → (𝑁C𝑘) = (𝑁C𝑁))
21 oveq1 7407 . . . . 5 (𝑘 = 𝑁 → (𝑘 BernPoly 𝑋) = (𝑁 BernPoly 𝑋))
22 oveq2 7408 . . . . . 6 (𝑘 = 𝑁 → (𝑁𝑘) = (𝑁𝑁))
2322oveq1d 7415 . . . . 5 (𝑘 = 𝑁 → ((𝑁𝑘) + 1) = ((𝑁𝑁) + 1))
2421, 23oveq12d 7418 . . . 4 (𝑘 = 𝑁 → ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)) = ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1)))
2520, 24oveq12d 7418 . . 3 (𝑘 = 𝑁 → ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) = ((𝑁C𝑁) · ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1))))
263, 19, 25fsumm1 15756 . 2 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) + ((𝑁C𝑁) · ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1)))))
27 bcnn 14320 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁C𝑁) = 1)
2827adantr 480 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁C𝑁) = 1)
29 nn0cn 12504 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
3029adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → 𝑁 ∈ ℂ)
3130subidd 11575 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁𝑁) = 0)
3231oveq1d 7415 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁𝑁) + 1) = (0 + 1))
33 0p1e1 12355 . . . . . . . 8 (0 + 1) = 1
3432, 33eqtrdi 2785 . . . . . . 7 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁𝑁) + 1) = 1)
3534oveq2d 7416 . . . . . 6 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1)) = ((𝑁 BernPoly 𝑋) / 1))
36 bpolycl 16057 . . . . . . 7 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) ∈ ℂ)
3736div1d 12002 . . . . . 6 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁 BernPoly 𝑋) / 1) = (𝑁 BernPoly 𝑋))
3835, 37eqtrd 2769 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1)) = (𝑁 BernPoly 𝑋))
3928, 38oveq12d 7418 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁C𝑁) · ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1))) = (1 · (𝑁 BernPoly 𝑋)))
4036mullidd 11246 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (1 · (𝑁 BernPoly 𝑋)) = (𝑁 BernPoly 𝑋))
4139, 40eqtrd 2769 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁C𝑁) · ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1))) = (𝑁 BernPoly 𝑋))
4241oveq2d 7416 . 2 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) + ((𝑁C𝑁) · ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1)))) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) + (𝑁 BernPoly 𝑋)))
43 bpolyval 16054 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
4443eqcomd 2740 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))) = (𝑁 BernPoly 𝑋))
45 expcl 14087 . . . . 5 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋𝑁) ∈ ℂ)
4645ancoms 458 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑋𝑁) ∈ ℂ)
47 fzfid 13981 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (0...(𝑁 − 1)) ∈ Fin)
48 fzssp1 13574 . . . . . . . 8 (0...(𝑁 − 1)) ⊆ (0...((𝑁 − 1) + 1))
49 ax-1cn 11180 . . . . . . . . . 10 1 ∈ ℂ
50 npcan 11484 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
5130, 49, 50sylancl 586 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
5251oveq2d 7416 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (0...((𝑁 − 1) + 1)) = (0...𝑁))
5348, 52sseqtrid 3999 . . . . . . 7 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (0...(𝑁 − 1)) ⊆ (0...𝑁))
5453sselda 3956 . . . . . 6 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ (0...𝑁))
5554, 19syldan 591 . . . . 5 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) ∈ ℂ)
5647, 55fsumcl 15738 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) ∈ ℂ)
5746, 56, 36subaddd 11605 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))) = (𝑁 BernPoly 𝑋) ↔ (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) + (𝑁 BernPoly 𝑋)) = (𝑋𝑁)))
5844, 57mpbid 232 . 2 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) + (𝑁 BernPoly 𝑋)) = (𝑋𝑁))
5926, 42, 583eqtrd 2773 1 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) = (𝑋𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cfv 6528  (class class class)co 7400  cc 11120  0cc0 11122  1c1 11123   + caddc 11125   · cmul 11127  cmin 11459   / cdiv 11887  cn 12233  0cn0 12494  cz 12581  cuz 12845  ...cfz 13514  cexp 14069  Ccbc 14310  Σcsu 15691   BernPoly cbp 16051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-inf2 9648  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199  ax-pre-sup 11200
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-int 4921  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-se 5605  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-isom 6537  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-1st 7983  df-2nd 7984  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-er 8714  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-sup 9449  df-oi 9517  df-card 9946  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-div 11888  df-nn 12234  df-2 12296  df-3 12297  df-n0 12495  df-z 12582  df-uz 12846  df-rp 13002  df-fz 13515  df-fzo 13662  df-seq 14010  df-exp 14070  df-fac 14282  df-bc 14311  df-hash 14339  df-cj 15107  df-re 15108  df-im 15109  df-sqrt 15243  df-abs 15244  df-clim 15493  df-sum 15692  df-bpoly 16052
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator