MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpolysum Structured version   Visualization version   GIF version

Theorem bpolysum 15763
Description: A sum for Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.) (Proof shortened by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
bpolysum ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) = (𝑋𝑁))
Distinct variable groups:   𝑘,𝑁   𝑘,𝑋

Proof of Theorem bpolysum
StepHypRef Expression
1 simpl 483 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → 𝑁 ∈ ℕ0)
2 nn0uz 12620 . . . 4 0 = (ℤ‘0)
31, 2eleqtrdi 2849 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → 𝑁 ∈ (ℤ‘0))
4 elfzelz 13256 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ)
5 bccl 14036 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁C𝑘) ∈ ℕ0)
61, 4, 5syl2an 596 . . . . 5 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℕ0)
76nn0cnd 12295 . . . 4 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℂ)
8 elfznn0 13349 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
9 simpr 485 . . . . . 6 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → 𝑋 ∈ ℂ)
10 bpolycl 15762 . . . . . 6 ((𝑘 ∈ ℕ0𝑋 ∈ ℂ) → (𝑘 BernPoly 𝑋) ∈ ℂ)
118, 9, 10syl2anr 597 . . . . 5 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑘 BernPoly 𝑋) ∈ ℂ)
12 fznn0sub 13288 . . . . . . . 8 (𝑘 ∈ (0...𝑁) → (𝑁𝑘) ∈ ℕ0)
1312adantl 482 . . . . . . 7 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁𝑘) ∈ ℕ0)
14 nn0p1nn 12272 . . . . . . 7 ((𝑁𝑘) ∈ ℕ0 → ((𝑁𝑘) + 1) ∈ ℕ)
1513, 14syl 17 . . . . . 6 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) + 1) ∈ ℕ)
1615nncnd 11989 . . . . 5 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) + 1) ∈ ℂ)
1715nnne0d 12023 . . . . 5 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) + 1) ≠ 0)
1811, 16, 17divcld 11751 . . . 4 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)) ∈ ℂ)
197, 18mulcld 10995 . . 3 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) ∈ ℂ)
20 oveq2 7283 . . . 4 (𝑘 = 𝑁 → (𝑁C𝑘) = (𝑁C𝑁))
21 oveq1 7282 . . . . 5 (𝑘 = 𝑁 → (𝑘 BernPoly 𝑋) = (𝑁 BernPoly 𝑋))
22 oveq2 7283 . . . . . 6 (𝑘 = 𝑁 → (𝑁𝑘) = (𝑁𝑁))
2322oveq1d 7290 . . . . 5 (𝑘 = 𝑁 → ((𝑁𝑘) + 1) = ((𝑁𝑁) + 1))
2421, 23oveq12d 7293 . . . 4 (𝑘 = 𝑁 → ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)) = ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1)))
2520, 24oveq12d 7293 . . 3 (𝑘 = 𝑁 → ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) = ((𝑁C𝑁) · ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1))))
263, 19, 25fsumm1 15463 . 2 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) + ((𝑁C𝑁) · ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1)))))
27 bcnn 14026 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁C𝑁) = 1)
2827adantr 481 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁C𝑁) = 1)
29 nn0cn 12243 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
3029adantr 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → 𝑁 ∈ ℂ)
3130subidd 11320 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁𝑁) = 0)
3231oveq1d 7290 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁𝑁) + 1) = (0 + 1))
33 0p1e1 12095 . . . . . . . 8 (0 + 1) = 1
3432, 33eqtrdi 2794 . . . . . . 7 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁𝑁) + 1) = 1)
3534oveq2d 7291 . . . . . 6 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1)) = ((𝑁 BernPoly 𝑋) / 1))
36 bpolycl 15762 . . . . . . 7 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) ∈ ℂ)
3736div1d 11743 . . . . . 6 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁 BernPoly 𝑋) / 1) = (𝑁 BernPoly 𝑋))
3835, 37eqtrd 2778 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1)) = (𝑁 BernPoly 𝑋))
3928, 38oveq12d 7293 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁C𝑁) · ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1))) = (1 · (𝑁 BernPoly 𝑋)))
4036mulid2d 10993 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (1 · (𝑁 BernPoly 𝑋)) = (𝑁 BernPoly 𝑋))
4139, 40eqtrd 2778 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁C𝑁) · ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1))) = (𝑁 BernPoly 𝑋))
4241oveq2d 7291 . 2 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) + ((𝑁C𝑁) · ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1)))) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) + (𝑁 BernPoly 𝑋)))
43 bpolyval 15759 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
4443eqcomd 2744 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))) = (𝑁 BernPoly 𝑋))
45 expcl 13800 . . . . 5 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋𝑁) ∈ ℂ)
4645ancoms 459 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑋𝑁) ∈ ℂ)
47 fzfid 13693 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (0...(𝑁 − 1)) ∈ Fin)
48 fzssp1 13299 . . . . . . . 8 (0...(𝑁 − 1)) ⊆ (0...((𝑁 − 1) + 1))
49 ax-1cn 10929 . . . . . . . . . 10 1 ∈ ℂ
50 npcan 11230 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
5130, 49, 50sylancl 586 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
5251oveq2d 7291 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (0...((𝑁 − 1) + 1)) = (0...𝑁))
5348, 52sseqtrid 3973 . . . . . . 7 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (0...(𝑁 − 1)) ⊆ (0...𝑁))
5453sselda 3921 . . . . . 6 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ (0...𝑁))
5554, 19syldan 591 . . . . 5 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) ∈ ℂ)
5647, 55fsumcl 15445 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) ∈ ℂ)
5746, 56, 36subaddd 11350 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))) = (𝑁 BernPoly 𝑋) ↔ (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) + (𝑁 BernPoly 𝑋)) = (𝑋𝑁)))
5844, 57mpbid 231 . 2 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) + (𝑁 BernPoly 𝑋)) = (𝑋𝑁))
5926, 42, 583eqtrd 2782 1 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) = (𝑋𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205   / cdiv 11632  cn 11973  0cn0 12233  cz 12319  cuz 12582  ...cfz 13239  cexp 13782  Ccbc 14016  Σcsu 15397   BernPoly cbp 15756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-bpoly 15757
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator