MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpolysum Structured version   Visualization version   GIF version

Theorem bpolysum 15952
Description: A sum for Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.) (Proof shortened by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
bpolysum ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) = (𝑋𝑁))
Distinct variable groups:   𝑘,𝑁   𝑘,𝑋

Proof of Theorem bpolysum
StepHypRef Expression
1 simpl 482 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → 𝑁 ∈ ℕ0)
2 nn0uz 12766 . . . 4 0 = (ℤ‘0)
31, 2eleqtrdi 2839 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → 𝑁 ∈ (ℤ‘0))
4 elfzelz 13416 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ)
5 bccl 14221 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁C𝑘) ∈ ℕ0)
61, 4, 5syl2an 596 . . . . 5 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℕ0)
76nn0cnd 12436 . . . 4 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℂ)
8 elfznn0 13512 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
9 simpr 484 . . . . . 6 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → 𝑋 ∈ ℂ)
10 bpolycl 15951 . . . . . 6 ((𝑘 ∈ ℕ0𝑋 ∈ ℂ) → (𝑘 BernPoly 𝑋) ∈ ℂ)
118, 9, 10syl2anr 597 . . . . 5 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑘 BernPoly 𝑋) ∈ ℂ)
12 fznn0sub 13448 . . . . . . . 8 (𝑘 ∈ (0...𝑁) → (𝑁𝑘) ∈ ℕ0)
1312adantl 481 . . . . . . 7 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁𝑘) ∈ ℕ0)
14 nn0p1nn 12412 . . . . . . 7 ((𝑁𝑘) ∈ ℕ0 → ((𝑁𝑘) + 1) ∈ ℕ)
1513, 14syl 17 . . . . . 6 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) + 1) ∈ ℕ)
1615nncnd 12133 . . . . 5 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) + 1) ∈ ℂ)
1715nnne0d 12167 . . . . 5 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) + 1) ≠ 0)
1811, 16, 17divcld 11889 . . . 4 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)) ∈ ℂ)
197, 18mulcld 11124 . . 3 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) ∈ ℂ)
20 oveq2 7349 . . . 4 (𝑘 = 𝑁 → (𝑁C𝑘) = (𝑁C𝑁))
21 oveq1 7348 . . . . 5 (𝑘 = 𝑁 → (𝑘 BernPoly 𝑋) = (𝑁 BernPoly 𝑋))
22 oveq2 7349 . . . . . 6 (𝑘 = 𝑁 → (𝑁𝑘) = (𝑁𝑁))
2322oveq1d 7356 . . . . 5 (𝑘 = 𝑁 → ((𝑁𝑘) + 1) = ((𝑁𝑁) + 1))
2421, 23oveq12d 7359 . . . 4 (𝑘 = 𝑁 → ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)) = ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1)))
2520, 24oveq12d 7359 . . 3 (𝑘 = 𝑁 → ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) = ((𝑁C𝑁) · ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1))))
263, 19, 25fsumm1 15650 . 2 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) + ((𝑁C𝑁) · ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1)))))
27 bcnn 14211 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁C𝑁) = 1)
2827adantr 480 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁C𝑁) = 1)
29 nn0cn 12383 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
3029adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → 𝑁 ∈ ℂ)
3130subidd 11452 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁𝑁) = 0)
3231oveq1d 7356 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁𝑁) + 1) = (0 + 1))
33 0p1e1 12234 . . . . . . . 8 (0 + 1) = 1
3432, 33eqtrdi 2781 . . . . . . 7 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁𝑁) + 1) = 1)
3534oveq2d 7357 . . . . . 6 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1)) = ((𝑁 BernPoly 𝑋) / 1))
36 bpolycl 15951 . . . . . . 7 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) ∈ ℂ)
3736div1d 11881 . . . . . 6 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁 BernPoly 𝑋) / 1) = (𝑁 BernPoly 𝑋))
3835, 37eqtrd 2765 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1)) = (𝑁 BernPoly 𝑋))
3928, 38oveq12d 7359 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁C𝑁) · ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1))) = (1 · (𝑁 BernPoly 𝑋)))
4036mullidd 11122 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (1 · (𝑁 BernPoly 𝑋)) = (𝑁 BernPoly 𝑋))
4139, 40eqtrd 2765 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁C𝑁) · ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1))) = (𝑁 BernPoly 𝑋))
4241oveq2d 7357 . 2 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) + ((𝑁C𝑁) · ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1)))) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) + (𝑁 BernPoly 𝑋)))
43 bpolyval 15948 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
4443eqcomd 2736 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))) = (𝑁 BernPoly 𝑋))
45 expcl 13978 . . . . 5 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋𝑁) ∈ ℂ)
4645ancoms 458 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑋𝑁) ∈ ℂ)
47 fzfid 13872 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (0...(𝑁 − 1)) ∈ Fin)
48 fzssp1 13459 . . . . . . . 8 (0...(𝑁 − 1)) ⊆ (0...((𝑁 − 1) + 1))
49 ax-1cn 11056 . . . . . . . . . 10 1 ∈ ℂ
50 npcan 11361 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
5130, 49, 50sylancl 586 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
5251oveq2d 7357 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (0...((𝑁 − 1) + 1)) = (0...𝑁))
5348, 52sseqtrid 3975 . . . . . . 7 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (0...(𝑁 − 1)) ⊆ (0...𝑁))
5453sselda 3932 . . . . . 6 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ (0...𝑁))
5554, 19syldan 591 . . . . 5 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) ∈ ℂ)
5647, 55fsumcl 15632 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) ∈ ℂ)
5746, 56, 36subaddd 11482 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))) = (𝑁 BernPoly 𝑋) ↔ (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) + (𝑁 BernPoly 𝑋)) = (𝑋𝑁)))
5844, 57mpbid 232 . 2 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) + (𝑁 BernPoly 𝑋)) = (𝑋𝑁))
5926, 42, 583eqtrd 2769 1 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) = (𝑋𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  cfv 6477  (class class class)co 7341  cc 10996  0cc0 10998  1c1 10999   + caddc 11001   · cmul 11003  cmin 11336   / cdiv 11766  cn 12117  0cn0 12373  cz 12460  cuz 12724  ...cfz 13399  cexp 13960  Ccbc 14201  Σcsu 15585   BernPoly cbp 15945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-oi 9391  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-n0 12374  df-z 12461  df-uz 12725  df-rp 12883  df-fz 13400  df-fzo 13547  df-seq 13901  df-exp 13961  df-fac 14173  df-bc 14202  df-hash 14230  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-clim 15387  df-sum 15586  df-bpoly 15946
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator