MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpolysum Structured version   Visualization version   GIF version

Theorem bpolysum 16089
Description: A sum for Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.) (Proof shortened by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
bpolysum ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) = (𝑋𝑁))
Distinct variable groups:   𝑘,𝑁   𝑘,𝑋

Proof of Theorem bpolysum
StepHypRef Expression
1 simpl 482 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → 𝑁 ∈ ℕ0)
2 nn0uz 12920 . . . 4 0 = (ℤ‘0)
31, 2eleqtrdi 2851 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → 𝑁 ∈ (ℤ‘0))
4 elfzelz 13564 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ)
5 bccl 14361 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁C𝑘) ∈ ℕ0)
61, 4, 5syl2an 596 . . . . 5 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℕ0)
76nn0cnd 12589 . . . 4 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℂ)
8 elfznn0 13660 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
9 simpr 484 . . . . . 6 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → 𝑋 ∈ ℂ)
10 bpolycl 16088 . . . . . 6 ((𝑘 ∈ ℕ0𝑋 ∈ ℂ) → (𝑘 BernPoly 𝑋) ∈ ℂ)
118, 9, 10syl2anr 597 . . . . 5 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑘 BernPoly 𝑋) ∈ ℂ)
12 fznn0sub 13596 . . . . . . . 8 (𝑘 ∈ (0...𝑁) → (𝑁𝑘) ∈ ℕ0)
1312adantl 481 . . . . . . 7 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁𝑘) ∈ ℕ0)
14 nn0p1nn 12565 . . . . . . 7 ((𝑁𝑘) ∈ ℕ0 → ((𝑁𝑘) + 1) ∈ ℕ)
1513, 14syl 17 . . . . . 6 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) + 1) ∈ ℕ)
1615nncnd 12282 . . . . 5 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) + 1) ∈ ℂ)
1715nnne0d 12316 . . . . 5 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) + 1) ≠ 0)
1811, 16, 17divcld 12043 . . . 4 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)) ∈ ℂ)
197, 18mulcld 11281 . . 3 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) ∈ ℂ)
20 oveq2 7439 . . . 4 (𝑘 = 𝑁 → (𝑁C𝑘) = (𝑁C𝑁))
21 oveq1 7438 . . . . 5 (𝑘 = 𝑁 → (𝑘 BernPoly 𝑋) = (𝑁 BernPoly 𝑋))
22 oveq2 7439 . . . . . 6 (𝑘 = 𝑁 → (𝑁𝑘) = (𝑁𝑁))
2322oveq1d 7446 . . . . 5 (𝑘 = 𝑁 → ((𝑁𝑘) + 1) = ((𝑁𝑁) + 1))
2421, 23oveq12d 7449 . . . 4 (𝑘 = 𝑁 → ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)) = ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1)))
2520, 24oveq12d 7449 . . 3 (𝑘 = 𝑁 → ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) = ((𝑁C𝑁) · ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1))))
263, 19, 25fsumm1 15787 . 2 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) + ((𝑁C𝑁) · ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1)))))
27 bcnn 14351 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁C𝑁) = 1)
2827adantr 480 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁C𝑁) = 1)
29 nn0cn 12536 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
3029adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → 𝑁 ∈ ℂ)
3130subidd 11608 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁𝑁) = 0)
3231oveq1d 7446 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁𝑁) + 1) = (0 + 1))
33 0p1e1 12388 . . . . . . . 8 (0 + 1) = 1
3432, 33eqtrdi 2793 . . . . . . 7 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁𝑁) + 1) = 1)
3534oveq2d 7447 . . . . . 6 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1)) = ((𝑁 BernPoly 𝑋) / 1))
36 bpolycl 16088 . . . . . . 7 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) ∈ ℂ)
3736div1d 12035 . . . . . 6 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁 BernPoly 𝑋) / 1) = (𝑁 BernPoly 𝑋))
3835, 37eqtrd 2777 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1)) = (𝑁 BernPoly 𝑋))
3928, 38oveq12d 7449 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁C𝑁) · ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1))) = (1 · (𝑁 BernPoly 𝑋)))
4036mullidd 11279 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (1 · (𝑁 BernPoly 𝑋)) = (𝑁 BernPoly 𝑋))
4139, 40eqtrd 2777 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁C𝑁) · ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1))) = (𝑁 BernPoly 𝑋))
4241oveq2d 7447 . 2 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) + ((𝑁C𝑁) · ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1)))) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) + (𝑁 BernPoly 𝑋)))
43 bpolyval 16085 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
4443eqcomd 2743 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))) = (𝑁 BernPoly 𝑋))
45 expcl 14120 . . . . 5 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋𝑁) ∈ ℂ)
4645ancoms 458 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑋𝑁) ∈ ℂ)
47 fzfid 14014 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (0...(𝑁 − 1)) ∈ Fin)
48 fzssp1 13607 . . . . . . . 8 (0...(𝑁 − 1)) ⊆ (0...((𝑁 − 1) + 1))
49 ax-1cn 11213 . . . . . . . . . 10 1 ∈ ℂ
50 npcan 11517 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
5130, 49, 50sylancl 586 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
5251oveq2d 7447 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (0...((𝑁 − 1) + 1)) = (0...𝑁))
5348, 52sseqtrid 4026 . . . . . . 7 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (0...(𝑁 − 1)) ⊆ (0...𝑁))
5453sselda 3983 . . . . . 6 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ (0...𝑁))
5554, 19syldan 591 . . . . 5 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) ∈ ℂ)
5647, 55fsumcl 15769 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) ∈ ℂ)
5746, 56, 36subaddd 11638 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))) = (𝑁 BernPoly 𝑋) ↔ (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) + (𝑁 BernPoly 𝑋)) = (𝑋𝑁)))
5844, 57mpbid 232 . 2 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) + (𝑁 BernPoly 𝑋)) = (𝑋𝑁))
5926, 42, 583eqtrd 2781 1 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) = (𝑋𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  cmin 11492   / cdiv 11920  cn 12266  0cn0 12526  cz 12613  cuz 12878  ...cfz 13547  cexp 14102  Ccbc 14341  Σcsu 15722   BernPoly cbp 16082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-bpoly 16083
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator