MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quart Structured version   Visualization version   GIF version

Theorem quart 24802
Description: The quartic equation, writing out all roots using square and cube root functions so that only direct substitutions remain, and we can actually claim to have a "quartic equation". Naturally, this theorem is ridiculously long (see quartfull 31478) if all the substitutions are performed. This is Metamath 100 proof #46. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
quart.a (𝜑𝐴 ∈ ℂ)
quart.b (𝜑𝐵 ∈ ℂ)
quart.c (𝜑𝐶 ∈ ℂ)
quart.d (𝜑𝐷 ∈ ℂ)
quart.x (𝜑𝑋 ∈ ℂ)
quart.e (𝜑𝐸 = -(𝐴 / 4))
quart.p (𝜑𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2))))
quart.q (𝜑𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)))
quart.r (𝜑𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))))
quart.u (𝜑𝑈 = ((𝑃↑2) + (12 · 𝑅)))
quart.v (𝜑𝑉 = ((-(2 · (𝑃↑3)) − (27 · (𝑄↑2))) + (72 · (𝑃 · 𝑅))))
quart.w (𝜑𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3)))))
quart.s (𝜑𝑆 = ((√‘𝑀) / 2))
quart.m (𝜑𝑀 = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3))
quart.t (𝜑𝑇 = (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3)))
quart.t0 (𝜑𝑇 ≠ 0)
quart.m0 (𝜑𝑀 ≠ 0)
quart.i (𝜑𝐼 = (√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆))))
quart.j (𝜑𝐽 = (√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆))))
Assertion
Ref Expression
quart (𝜑 → ((((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((𝐵 · (𝑋↑2)) + ((𝐶 · 𝑋) + 𝐷))) = 0 ↔ ((𝑋 = ((𝐸𝑆) + 𝐼) ∨ 𝑋 = ((𝐸𝑆) − 𝐼)) ∨ (𝑋 = ((𝐸 + 𝑆) + 𝐽) ∨ 𝑋 = ((𝐸 + 𝑆) − 𝐽)))))

Proof of Theorem quart
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 quart.a . . . 4 (𝜑𝐴 ∈ ℂ)
2 quart.b . . . 4 (𝜑𝐵 ∈ ℂ)
3 quart.c . . . 4 (𝜑𝐶 ∈ ℂ)
4 quart.d . . . 4 (𝜑𝐷 ∈ ℂ)
5 quart.p . . . 4 (𝜑𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2))))
6 quart.q . . . 4 (𝜑𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)))
7 quart.r . . . 4 (𝜑𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))))
8 quart.x . . . 4 (𝜑𝑋 ∈ ℂ)
9 quart.e . . . . . 6 (𝜑𝐸 = -(𝐴 / 4))
109oveq2d 6807 . . . . 5 (𝜑 → (𝑋𝐸) = (𝑋 − -(𝐴 / 4)))
11 4cn 11298 . . . . . . . 8 4 ∈ ℂ
1211a1i 11 . . . . . . 7 (𝜑 → 4 ∈ ℂ)
13 4ne0 11317 . . . . . . . 8 4 ≠ 0
1413a1i 11 . . . . . . 7 (𝜑 → 4 ≠ 0)
151, 12, 14divcld 11001 . . . . . 6 (𝜑 → (𝐴 / 4) ∈ ℂ)
168, 15subnegd 10599 . . . . 5 (𝜑 → (𝑋 − -(𝐴 / 4)) = (𝑋 + (𝐴 / 4)))
1710, 16eqtrd 2805 . . . 4 (𝜑 → (𝑋𝐸) = (𝑋 + (𝐴 / 4)))
181, 2, 3, 4, 5, 6, 7, 8, 17quart1 24797 . . 3 (𝜑 → (((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((𝐵 · (𝑋↑2)) + ((𝐶 · 𝑋) + 𝐷))) = ((((𝑋𝐸)↑4) + (𝑃 · ((𝑋𝐸)↑2))) + ((𝑄 · (𝑋𝐸)) + 𝑅)))
1918eqeq1d 2773 . 2 (𝜑 → ((((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((𝐵 · (𝑋↑2)) + ((𝐶 · 𝑋) + 𝐷))) = 0 ↔ ((((𝑋𝐸)↑4) + (𝑃 · ((𝑋𝐸)↑2))) + ((𝑄 · (𝑋𝐸)) + 𝑅)) = 0))
201, 2, 3, 4, 5, 6, 7quart1cl 24795 . . . 4 (𝜑 → (𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ))
2120simp1d 1136 . . 3 (𝜑𝑃 ∈ ℂ)
2220simp2d 1137 . . 3 (𝜑𝑄 ∈ ℂ)
2315negcld 10579 . . . . 5 (𝜑 → -(𝐴 / 4) ∈ ℂ)
249, 23eqeltrd 2850 . . . 4 (𝜑𝐸 ∈ ℂ)
258, 24subcld 10592 . . 3 (𝜑 → (𝑋𝐸) ∈ ℂ)
26 quart.u . . . . 5 (𝜑𝑈 = ((𝑃↑2) + (12 · 𝑅)))
27 quart.v . . . . 5 (𝜑𝑉 = ((-(2 · (𝑃↑3)) − (27 · (𝑄↑2))) + (72 · (𝑃 · 𝑅))))
28 quart.w . . . . 5 (𝜑𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3)))))
29 quart.s . . . . 5 (𝜑𝑆 = ((√‘𝑀) / 2))
30 quart.m . . . . 5 (𝜑𝑀 = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3))
31 quart.t . . . . 5 (𝜑𝑇 = (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3)))
32 quart.t0 . . . . 5 (𝜑𝑇 ≠ 0)
331, 2, 3, 4, 1, 9, 5, 6, 7, 26, 27, 28, 29, 30, 31, 32quartlem3 24800 . . . 4 (𝜑 → (𝑆 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑇 ∈ ℂ))
3433simp1d 1136 . . 3 (𝜑𝑆 ∈ ℂ)
3529oveq2d 6807 . . . . . 6 (𝜑 → (2 · 𝑆) = (2 · ((√‘𝑀) / 2)))
3633simp2d 1137 . . . . . . . 8 (𝜑𝑀 ∈ ℂ)
3736sqrtcld 14377 . . . . . . 7 (𝜑 → (√‘𝑀) ∈ ℂ)
38 2cnd 11293 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
39 2ne0 11313 . . . . . . . 8 2 ≠ 0
4039a1i 11 . . . . . . 7 (𝜑 → 2 ≠ 0)
4137, 38, 40divcan2d 11003 . . . . . 6 (𝜑 → (2 · ((√‘𝑀) / 2)) = (√‘𝑀))
4235, 41eqtrd 2805 . . . . 5 (𝜑 → (2 · 𝑆) = (√‘𝑀))
4342oveq1d 6806 . . . 4 (𝜑 → ((2 · 𝑆)↑2) = ((√‘𝑀)↑2))
4436sqsqrtd 14379 . . . 4 (𝜑 → ((√‘𝑀)↑2) = 𝑀)
4543, 44eqtr2d 2806 . . 3 (𝜑𝑀 = ((2 · 𝑆)↑2))
46 quart.m0 . . 3 (𝜑𝑀 ≠ 0)
47 quart.i . . . . 5 (𝜑𝐼 = (√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆))))
48 quart.j . . . . 5 (𝜑𝐽 = (√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆))))
491, 2, 3, 4, 1, 9, 5, 6, 7, 26, 27, 28, 29, 30, 31, 32, 46, 47, 48quartlem4 24801 . . . 4 (𝜑 → (𝑆 ≠ 0 ∧ 𝐼 ∈ ℂ ∧ 𝐽 ∈ ℂ))
5049simp2d 1137 . . 3 (𝜑𝐼 ∈ ℂ)
5147oveq1d 6806 . . . 4 (𝜑 → (𝐼↑2) = ((√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)))↑2))
5234sqcld 13206 . . . . . . . 8 (𝜑 → (𝑆↑2) ∈ ℂ)
5352negcld 10579 . . . . . . 7 (𝜑 → -(𝑆↑2) ∈ ℂ)
5421halfcld 11477 . . . . . . 7 (𝜑 → (𝑃 / 2) ∈ ℂ)
5553, 54subcld 10592 . . . . . 6 (𝜑 → (-(𝑆↑2) − (𝑃 / 2)) ∈ ℂ)
5622, 12, 14divcld 11001 . . . . . . 7 (𝜑 → (𝑄 / 4) ∈ ℂ)
5749simp1d 1136 . . . . . . 7 (𝜑𝑆 ≠ 0)
5856, 34, 57divcld 11001 . . . . . 6 (𝜑 → ((𝑄 / 4) / 𝑆) ∈ ℂ)
5955, 58addcld 10259 . . . . 5 (𝜑 → ((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)) ∈ ℂ)
6059sqsqrtd 14379 . . . 4 (𝜑 → ((√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)))↑2) = ((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)))
6151, 60eqtrd 2805 . . 3 (𝜑 → (𝐼↑2) = ((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)))
6220simp3d 1138 . . 3 (𝜑𝑅 ∈ ℂ)
63 1cnd 10256 . . . . 5 (𝜑 → 1 ∈ ℂ)
64 3z 11610 . . . . . 6 3 ∈ ℤ
65 1exp 13089 . . . . . 6 (3 ∈ ℤ → (1↑3) = 1)
6664, 65mp1i 13 . . . . 5 (𝜑 → (1↑3) = 1)
6733simp3d 1138 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℂ)
6867mulid2d 10258 . . . . . . . . . 10 (𝜑 → (1 · 𝑇) = 𝑇)
6968oveq2d 6807 . . . . . . . . 9 (𝜑 → ((2 · 𝑃) + (1 · 𝑇)) = ((2 · 𝑃) + 𝑇))
7068oveq2d 6807 . . . . . . . . 9 (𝜑 → (𝑈 / (1 · 𝑇)) = (𝑈 / 𝑇))
7169, 70oveq12d 6809 . . . . . . . 8 (𝜑 → (((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) = (((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)))
7271oveq1d 6806 . . . . . . 7 (𝜑 → ((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3) = ((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3))
7372negeqd 10475 . . . . . 6 (𝜑 → -((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3) = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3))
7430, 73eqtr4d 2808 . . . . 5 (𝜑𝑀 = -((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3))
75 oveq1 6798 . . . . . . . 8 (𝑥 = 1 → (𝑥↑3) = (1↑3))
7675eqeq1d 2773 . . . . . . 7 (𝑥 = 1 → ((𝑥↑3) = 1 ↔ (1↑3) = 1))
77 oveq1 6798 . . . . . . . . . . . 12 (𝑥 = 1 → (𝑥 · 𝑇) = (1 · 𝑇))
7877oveq2d 6807 . . . . . . . . . . 11 (𝑥 = 1 → ((2 · 𝑃) + (𝑥 · 𝑇)) = ((2 · 𝑃) + (1 · 𝑇)))
7977oveq2d 6807 . . . . . . . . . . 11 (𝑥 = 1 → (𝑈 / (𝑥 · 𝑇)) = (𝑈 / (1 · 𝑇)))
8078, 79oveq12d 6809 . . . . . . . . . 10 (𝑥 = 1 → (((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) = (((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))))
8180oveq1d 6806 . . . . . . . . 9 (𝑥 = 1 → ((((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) / 3) = ((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3))
8281negeqd 10475 . . . . . . . 8 (𝑥 = 1 → -((((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) / 3) = -((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3))
8382eqeq2d 2781 . . . . . . 7 (𝑥 = 1 → (𝑀 = -((((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) / 3) ↔ 𝑀 = -((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3)))
8476, 83anbi12d 616 . . . . . 6 (𝑥 = 1 → (((𝑥↑3) = 1 ∧ 𝑀 = -((((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) / 3)) ↔ ((1↑3) = 1 ∧ 𝑀 = -((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3))))
8584rspcev 3460 . . . . 5 ((1 ∈ ℂ ∧ ((1↑3) = 1 ∧ 𝑀 = -((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3))) → ∃𝑥 ∈ ℂ ((𝑥↑3) = 1 ∧ 𝑀 = -((((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) / 3)))
8663, 66, 74, 85syl12anc 1474 . . . 4 (𝜑 → ∃𝑥 ∈ ℂ ((𝑥↑3) = 1 ∧ 𝑀 = -((((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) / 3)))
87 2cn 11291 . . . . . 6 2 ∈ ℂ
88 mulcl 10220 . . . . . 6 ((2 ∈ ℂ ∧ 𝑃 ∈ ℂ) → (2 · 𝑃) ∈ ℂ)
8987, 21, 88sylancr 575 . . . . 5 (𝜑 → (2 · 𝑃) ∈ ℂ)
9021sqcld 13206 . . . . . 6 (𝜑 → (𝑃↑2) ∈ ℂ)
91 mulcl 10220 . . . . . . 7 ((4 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (4 · 𝑅) ∈ ℂ)
9211, 62, 91sylancr 575 . . . . . 6 (𝜑 → (4 · 𝑅) ∈ ℂ)
9390, 92subcld 10592 . . . . 5 (𝜑 → ((𝑃↑2) − (4 · 𝑅)) ∈ ℂ)
9422sqcld 13206 . . . . . 6 (𝜑 → (𝑄↑2) ∈ ℂ)
9594negcld 10579 . . . . 5 (𝜑 → -(𝑄↑2) ∈ ℂ)
9631oveq1d 6806 . . . . . 6 (𝜑 → (𝑇↑3) = ((((𝑉 + 𝑊) / 2)↑𝑐(1 / 3))↑3))
971, 2, 3, 4, 1, 9, 5, 6, 7, 26, 27, 28quartlem2 24799 . . . . . . . . . 10 (𝜑 → (𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ ∧ 𝑊 ∈ ℂ))
9897simp2d 1137 . . . . . . . . 9 (𝜑𝑉 ∈ ℂ)
9997simp3d 1138 . . . . . . . . 9 (𝜑𝑊 ∈ ℂ)
10098, 99addcld 10259 . . . . . . . 8 (𝜑 → (𝑉 + 𝑊) ∈ ℂ)
101100halfcld 11477 . . . . . . 7 (𝜑 → ((𝑉 + 𝑊) / 2) ∈ ℂ)
102 3nn 11386 . . . . . . 7 3 ∈ ℕ
103 cxproot 24650 . . . . . . 7 ((((𝑉 + 𝑊) / 2) ∈ ℂ ∧ 3 ∈ ℕ) → ((((𝑉 + 𝑊) / 2)↑𝑐(1 / 3))↑3) = ((𝑉 + 𝑊) / 2))
104101, 102, 103sylancl 574 . . . . . 6 (𝜑 → ((((𝑉 + 𝑊) / 2)↑𝑐(1 / 3))↑3) = ((𝑉 + 𝑊) / 2))
10596, 104eqtrd 2805 . . . . 5 (𝜑 → (𝑇↑3) = ((𝑉 + 𝑊) / 2))
10628oveq1d 6806 . . . . . 6 (𝜑 → (𝑊↑2) = ((√‘((𝑉↑2) − (4 · (𝑈↑3))))↑2))
10798sqcld 13206 . . . . . . . 8 (𝜑 → (𝑉↑2) ∈ ℂ)
10897simp1d 1136 . . . . . . . . . 10 (𝜑𝑈 ∈ ℂ)
109 3nn0 11510 . . . . . . . . . 10 3 ∈ ℕ0
110 expcl 13078 . . . . . . . . . 10 ((𝑈 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑈↑3) ∈ ℂ)
111108, 109, 110sylancl 574 . . . . . . . . 9 (𝜑 → (𝑈↑3) ∈ ℂ)
112 mulcl 10220 . . . . . . . . 9 ((4 ∈ ℂ ∧ (𝑈↑3) ∈ ℂ) → (4 · (𝑈↑3)) ∈ ℂ)
11311, 111, 112sylancr 575 . . . . . . . 8 (𝜑 → (4 · (𝑈↑3)) ∈ ℂ)
114107, 113subcld 10592 . . . . . . 7 (𝜑 → ((𝑉↑2) − (4 · (𝑈↑3))) ∈ ℂ)
115114sqsqrtd 14379 . . . . . 6 (𝜑 → ((√‘((𝑉↑2) − (4 · (𝑈↑3))))↑2) = ((𝑉↑2) − (4 · (𝑈↑3))))
116106, 115eqtrd 2805 . . . . 5 (𝜑 → (𝑊↑2) = ((𝑉↑2) − (4 · (𝑈↑3))))
11721, 22, 62, 26, 27quartlem1 24798 . . . . . 6 (𝜑 → (𝑈 = (((2 · 𝑃)↑2) − (3 · ((𝑃↑2) − (4 · 𝑅)))) ∧ 𝑉 = (((2 · ((2 · 𝑃)↑3)) − (9 · ((2 · 𝑃) · ((𝑃↑2) − (4 · 𝑅))))) + (27 · -(𝑄↑2)))))
118117simpld 482 . . . . 5 (𝜑𝑈 = (((2 · 𝑃)↑2) − (3 · ((𝑃↑2) − (4 · 𝑅)))))
119117simprd 483 . . . . 5 (𝜑𝑉 = (((2 · ((2 · 𝑃)↑3)) − (9 · ((2 · 𝑃) · ((𝑃↑2) − (4 · 𝑅))))) + (27 · -(𝑄↑2))))
12089, 93, 95, 36, 67, 105, 99, 116, 118, 119, 32mcubic 24788 . . . 4 (𝜑 → ((((𝑀↑3) + ((2 · 𝑃) · (𝑀↑2))) + ((((𝑃↑2) − (4 · 𝑅)) · 𝑀) + -(𝑄↑2))) = 0 ↔ ∃𝑥 ∈ ℂ ((𝑥↑3) = 1 ∧ 𝑀 = -((((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) / 3))))
12186, 120mpbird 247 . . 3 (𝜑 → (((𝑀↑3) + ((2 · 𝑃) · (𝑀↑2))) + ((((𝑃↑2) − (4 · 𝑅)) · 𝑀) + -(𝑄↑2))) = 0)
12249simp3d 1138 . . 3 (𝜑𝐽 ∈ ℂ)
12348oveq1d 6806 . . . 4 (𝜑 → (𝐽↑2) = ((√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)))↑2))
12455, 58subcld 10592 . . . . 5 (𝜑 → ((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)) ∈ ℂ)
125124sqsqrtd 14379 . . . 4 (𝜑 → ((√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)))↑2) = ((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)))
126123, 125eqtrd 2805 . . 3 (𝜑 → (𝐽↑2) = ((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)))
12721, 22, 25, 34, 45, 46, 50, 61, 62, 121, 122, 126dquart 24794 . 2 (𝜑 → (((((𝑋𝐸)↑4) + (𝑃 · ((𝑋𝐸)↑2))) + ((𝑄 · (𝑋𝐸)) + 𝑅)) = 0 ↔ (((𝑋𝐸) = (-𝑆 + 𝐼) ∨ (𝑋𝐸) = (-𝑆𝐼)) ∨ ((𝑋𝐸) = (𝑆 + 𝐽) ∨ (𝑋𝐸) = (𝑆𝐽)))))
12834negcld 10579 . . . . . . . 8 (𝜑 → -𝑆 ∈ ℂ)
129128, 50addcld 10259 . . . . . . 7 (𝜑 → (-𝑆 + 𝐼) ∈ ℂ)
1308, 24, 129subaddd 10610 . . . . . 6 (𝜑 → ((𝑋𝐸) = (-𝑆 + 𝐼) ↔ (𝐸 + (-𝑆 + 𝐼)) = 𝑋))
13124, 34negsubd 10598 . . . . . . . . 9 (𝜑 → (𝐸 + -𝑆) = (𝐸𝑆))
132131oveq1d 6806 . . . . . . . 8 (𝜑 → ((𝐸 + -𝑆) + 𝐼) = ((𝐸𝑆) + 𝐼))
13324, 128, 50addassd 10262 . . . . . . . 8 (𝜑 → ((𝐸 + -𝑆) + 𝐼) = (𝐸 + (-𝑆 + 𝐼)))
134132, 133eqtr3d 2807 . . . . . . 7 (𝜑 → ((𝐸𝑆) + 𝐼) = (𝐸 + (-𝑆 + 𝐼)))
135134eqeq1d 2773 . . . . . 6 (𝜑 → (((𝐸𝑆) + 𝐼) = 𝑋 ↔ (𝐸 + (-𝑆 + 𝐼)) = 𝑋))
136130, 135bitr4d 271 . . . . 5 (𝜑 → ((𝑋𝐸) = (-𝑆 + 𝐼) ↔ ((𝐸𝑆) + 𝐼) = 𝑋))
137 eqcom 2778 . . . . 5 (((𝐸𝑆) + 𝐼) = 𝑋𝑋 = ((𝐸𝑆) + 𝐼))
138136, 137syl6bb 276 . . . 4 (𝜑 → ((𝑋𝐸) = (-𝑆 + 𝐼) ↔ 𝑋 = ((𝐸𝑆) + 𝐼)))
139128, 50subcld 10592 . . . . . . 7 (𝜑 → (-𝑆𝐼) ∈ ℂ)
1408, 24, 139subaddd 10610 . . . . . 6 (𝜑 → ((𝑋𝐸) = (-𝑆𝐼) ↔ (𝐸 + (-𝑆𝐼)) = 𝑋))
141131oveq1d 6806 . . . . . . . 8 (𝜑 → ((𝐸 + -𝑆) − 𝐼) = ((𝐸𝑆) − 𝐼))
14224, 128, 50addsubassd 10612 . . . . . . . 8 (𝜑 → ((𝐸 + -𝑆) − 𝐼) = (𝐸 + (-𝑆𝐼)))
143141, 142eqtr3d 2807 . . . . . . 7 (𝜑 → ((𝐸𝑆) − 𝐼) = (𝐸 + (-𝑆𝐼)))
144143eqeq1d 2773 . . . . . 6 (𝜑 → (((𝐸𝑆) − 𝐼) = 𝑋 ↔ (𝐸 + (-𝑆𝐼)) = 𝑋))
145140, 144bitr4d 271 . . . . 5 (𝜑 → ((𝑋𝐸) = (-𝑆𝐼) ↔ ((𝐸𝑆) − 𝐼) = 𝑋))
146 eqcom 2778 . . . . 5 (((𝐸𝑆) − 𝐼) = 𝑋𝑋 = ((𝐸𝑆) − 𝐼))
147145, 146syl6bb 276 . . . 4 (𝜑 → ((𝑋𝐸) = (-𝑆𝐼) ↔ 𝑋 = ((𝐸𝑆) − 𝐼)))
148138, 147orbi12d 904 . . 3 (𝜑 → (((𝑋𝐸) = (-𝑆 + 𝐼) ∨ (𝑋𝐸) = (-𝑆𝐼)) ↔ (𝑋 = ((𝐸𝑆) + 𝐼) ∨ 𝑋 = ((𝐸𝑆) − 𝐼))))
14934, 122addcld 10259 . . . . . . 7 (𝜑 → (𝑆 + 𝐽) ∈ ℂ)
1508, 24, 149subaddd 10610 . . . . . 6 (𝜑 → ((𝑋𝐸) = (𝑆 + 𝐽) ↔ (𝐸 + (𝑆 + 𝐽)) = 𝑋))
15124, 34, 122addassd 10262 . . . . . . 7 (𝜑 → ((𝐸 + 𝑆) + 𝐽) = (𝐸 + (𝑆 + 𝐽)))
152151eqeq1d 2773 . . . . . 6 (𝜑 → (((𝐸 + 𝑆) + 𝐽) = 𝑋 ↔ (𝐸 + (𝑆 + 𝐽)) = 𝑋))
153150, 152bitr4d 271 . . . . 5 (𝜑 → ((𝑋𝐸) = (𝑆 + 𝐽) ↔ ((𝐸 + 𝑆) + 𝐽) = 𝑋))
154 eqcom 2778 . . . . 5 (((𝐸 + 𝑆) + 𝐽) = 𝑋𝑋 = ((𝐸 + 𝑆) + 𝐽))
155153, 154syl6bb 276 . . . 4 (𝜑 → ((𝑋𝐸) = (𝑆 + 𝐽) ↔ 𝑋 = ((𝐸 + 𝑆) + 𝐽)))
15634, 122subcld 10592 . . . . . . 7 (𝜑 → (𝑆𝐽) ∈ ℂ)
1578, 24, 156subaddd 10610 . . . . . 6 (𝜑 → ((𝑋𝐸) = (𝑆𝐽) ↔ (𝐸 + (𝑆𝐽)) = 𝑋))
15824, 34, 122addsubassd 10612 . . . . . . 7 (𝜑 → ((𝐸 + 𝑆) − 𝐽) = (𝐸 + (𝑆𝐽)))
159158eqeq1d 2773 . . . . . 6 (𝜑 → (((𝐸 + 𝑆) − 𝐽) = 𝑋 ↔ (𝐸 + (𝑆𝐽)) = 𝑋))
160157, 159bitr4d 271 . . . . 5 (𝜑 → ((𝑋𝐸) = (𝑆𝐽) ↔ ((𝐸 + 𝑆) − 𝐽) = 𝑋))
161 eqcom 2778 . . . . 5 (((𝐸 + 𝑆) − 𝐽) = 𝑋𝑋 = ((𝐸 + 𝑆) − 𝐽))
162160, 161syl6bb 276 . . . 4 (𝜑 → ((𝑋𝐸) = (𝑆𝐽) ↔ 𝑋 = ((𝐸 + 𝑆) − 𝐽)))
163155, 162orbi12d 904 . . 3 (𝜑 → (((𝑋𝐸) = (𝑆 + 𝐽) ∨ (𝑋𝐸) = (𝑆𝐽)) ↔ (𝑋 = ((𝐸 + 𝑆) + 𝐽) ∨ 𝑋 = ((𝐸 + 𝑆) − 𝐽))))
164148, 163orbi12d 904 . 2 (𝜑 → ((((𝑋𝐸) = (-𝑆 + 𝐼) ∨ (𝑋𝐸) = (-𝑆𝐼)) ∨ ((𝑋𝐸) = (𝑆 + 𝐽) ∨ (𝑋𝐸) = (𝑆𝐽))) ↔ ((𝑋 = ((𝐸𝑆) + 𝐼) ∨ 𝑋 = ((𝐸𝑆) − 𝐼)) ∨ (𝑋 = ((𝐸 + 𝑆) + 𝐽) ∨ 𝑋 = ((𝐸 + 𝑆) − 𝐽)))))
16519, 127, 1643bitrd 294 1 (𝜑 → ((((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((𝐵 · (𝑋↑2)) + ((𝐶 · 𝑋) + 𝐷))) = 0 ↔ ((𝑋 = ((𝐸𝑆) + 𝐼) ∨ 𝑋 = ((𝐸𝑆) − 𝐼)) ∨ (𝑋 = ((𝐸 + 𝑆) + 𝐽) ∨ 𝑋 = ((𝐸 + 𝑆) − 𝐽)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wo 836   = wceq 1631  wcel 2145  wne 2943  wrex 3062  cfv 6029  (class class class)co 6791  cc 10134  0cc0 10136  1c1 10137   + caddc 10139   · cmul 10141  cmin 10466  -cneg 10467   / cdiv 10884  cn 11220  2c2 11270  3c3 11271  4c4 11272  5c5 11273  6c6 11274  7c7 11275  8c8 11276  9c9 11277  0cn0 11492  cz 11577  cdc 11693  cexp 13060  csqrt 14174  𝑐ccxp 24516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-inf2 8700  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214  ax-addf 10215  ax-mulf 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-isom 6038  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-of 7042  df-om 7211  df-1st 7313  df-2nd 7314  df-supp 7445  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-2o 7712  df-oadd 7715  df-er 7894  df-map 8009  df-pm 8010  df-ixp 8061  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-fsupp 8430  df-fi 8471  df-sup 8502  df-inf 8503  df-oi 8569  df-card 8963  df-cda 9190  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885  df-nn 11221  df-2 11279  df-3 11280  df-4 11281  df-5 11282  df-6 11283  df-7 11284  df-8 11285  df-9 11286  df-n0 11493  df-z 11578  df-dec 11694  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12144  df-xadd 12145  df-xmul 12146  df-ioo 12377  df-ioc 12378  df-ico 12379  df-icc 12380  df-fz 12527  df-fzo 12667  df-fl 12794  df-mod 12870  df-seq 13002  df-exp 13061  df-fac 13258  df-bc 13287  df-hash 13315  df-shft 14008  df-cj 14040  df-re 14041  df-im 14042  df-sqrt 14176  df-abs 14177  df-limsup 14403  df-clim 14420  df-rlim 14421  df-sum 14618  df-ef 14997  df-sin 14999  df-cos 15000  df-pi 15002  df-dvds 15183  df-struct 16059  df-ndx 16060  df-slot 16061  df-base 16063  df-sets 16064  df-ress 16065  df-plusg 16155  df-mulr 16156  df-starv 16157  df-sca 16158  df-vsca 16159  df-ip 16160  df-tset 16161  df-ple 16162  df-ds 16165  df-unif 16166  df-hom 16167  df-cco 16168  df-rest 16284  df-topn 16285  df-0g 16303  df-gsum 16304  df-topgen 16305  df-pt 16306  df-prds 16309  df-xrs 16363  df-qtop 16368  df-imas 16369  df-xps 16371  df-mre 16447  df-mrc 16448  df-acs 16450  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19946  df-xmet 19947  df-met 19948  df-bl 19949  df-mopn 19950  df-fbas 19951  df-fg 19952  df-cnfld 19955  df-top 20912  df-topon 20929  df-topsp 20951  df-bases 20964  df-cld 21037  df-ntr 21038  df-cls 21039  df-nei 21116  df-lp 21154  df-perf 21155  df-cn 21245  df-cnp 21246  df-haus 21333  df-tx 21579  df-hmeo 21772  df-fil 21863  df-fm 21955  df-flim 21956  df-flf 21957  df-xms 22338  df-ms 22339  df-tms 22340  df-cncf 22894  df-limc 23843  df-dv 23844  df-log 24517  df-cxp 24518
This theorem is referenced by:  quartfull  31478
  Copyright terms: Public domain W3C validator