MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quart Structured version   Visualization version   GIF version

Theorem quart 25039
Description: The quartic equation, writing out all roots using square and cube root functions so that only direct substitutions remain, and we can actually claim to have a "quartic equation". Naturally, this theorem is ridiculously long (see quartfull 31746) if all the substitutions are performed. This is Metamath 100 proof #46. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
quart.a (𝜑𝐴 ∈ ℂ)
quart.b (𝜑𝐵 ∈ ℂ)
quart.c (𝜑𝐶 ∈ ℂ)
quart.d (𝜑𝐷 ∈ ℂ)
quart.x (𝜑𝑋 ∈ ℂ)
quart.e (𝜑𝐸 = -(𝐴 / 4))
quart.p (𝜑𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2))))
quart.q (𝜑𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)))
quart.r (𝜑𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))))
quart.u (𝜑𝑈 = ((𝑃↑2) + (12 · 𝑅)))
quart.v (𝜑𝑉 = ((-(2 · (𝑃↑3)) − (27 · (𝑄↑2))) + (72 · (𝑃 · 𝑅))))
quart.w (𝜑𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3)))))
quart.s (𝜑𝑆 = ((√‘𝑀) / 2))
quart.m (𝜑𝑀 = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3))
quart.t (𝜑𝑇 = (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3)))
quart.t0 (𝜑𝑇 ≠ 0)
quart.m0 (𝜑𝑀 ≠ 0)
quart.i (𝜑𝐼 = (√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆))))
quart.j (𝜑𝐽 = (√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆))))
Assertion
Ref Expression
quart (𝜑 → ((((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((𝐵 · (𝑋↑2)) + ((𝐶 · 𝑋) + 𝐷))) = 0 ↔ ((𝑋 = ((𝐸𝑆) + 𝐼) ∨ 𝑋 = ((𝐸𝑆) − 𝐼)) ∨ (𝑋 = ((𝐸 + 𝑆) + 𝐽) ∨ 𝑋 = ((𝐸 + 𝑆) − 𝐽)))))

Proof of Theorem quart
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 quart.a . . . 4 (𝜑𝐴 ∈ ℂ)
2 quart.b . . . 4 (𝜑𝐵 ∈ ℂ)
3 quart.c . . . 4 (𝜑𝐶 ∈ ℂ)
4 quart.d . . . 4 (𝜑𝐷 ∈ ℂ)
5 quart.p . . . 4 (𝜑𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2))))
6 quart.q . . . 4 (𝜑𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)))
7 quart.r . . . 4 (𝜑𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))))
8 quart.x . . . 4 (𝜑𝑋 ∈ ℂ)
9 quart.e . . . . . 6 (𝜑𝐸 = -(𝐴 / 4))
109oveq2d 6938 . . . . 5 (𝜑 → (𝑋𝐸) = (𝑋 − -(𝐴 / 4)))
11 4cn 11461 . . . . . . . 8 4 ∈ ℂ
1211a1i 11 . . . . . . 7 (𝜑 → 4 ∈ ℂ)
13 4ne0 11490 . . . . . . . 8 4 ≠ 0
1413a1i 11 . . . . . . 7 (𝜑 → 4 ≠ 0)
151, 12, 14divcld 11151 . . . . . 6 (𝜑 → (𝐴 / 4) ∈ ℂ)
168, 15subnegd 10741 . . . . 5 (𝜑 → (𝑋 − -(𝐴 / 4)) = (𝑋 + (𝐴 / 4)))
1710, 16eqtrd 2813 . . . 4 (𝜑 → (𝑋𝐸) = (𝑋 + (𝐴 / 4)))
181, 2, 3, 4, 5, 6, 7, 8, 17quart1 25034 . . 3 (𝜑 → (((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((𝐵 · (𝑋↑2)) + ((𝐶 · 𝑋) + 𝐷))) = ((((𝑋𝐸)↑4) + (𝑃 · ((𝑋𝐸)↑2))) + ((𝑄 · (𝑋𝐸)) + 𝑅)))
1918eqeq1d 2779 . 2 (𝜑 → ((((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((𝐵 · (𝑋↑2)) + ((𝐶 · 𝑋) + 𝐷))) = 0 ↔ ((((𝑋𝐸)↑4) + (𝑃 · ((𝑋𝐸)↑2))) + ((𝑄 · (𝑋𝐸)) + 𝑅)) = 0))
201, 2, 3, 4, 5, 6, 7quart1cl 25032 . . . 4 (𝜑 → (𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ))
2120simp1d 1133 . . 3 (𝜑𝑃 ∈ ℂ)
2220simp2d 1134 . . 3 (𝜑𝑄 ∈ ℂ)
2315negcld 10721 . . . . 5 (𝜑 → -(𝐴 / 4) ∈ ℂ)
249, 23eqeltrd 2858 . . . 4 (𝜑𝐸 ∈ ℂ)
258, 24subcld 10734 . . 3 (𝜑 → (𝑋𝐸) ∈ ℂ)
26 quart.u . . . . 5 (𝜑𝑈 = ((𝑃↑2) + (12 · 𝑅)))
27 quart.v . . . . 5 (𝜑𝑉 = ((-(2 · (𝑃↑3)) − (27 · (𝑄↑2))) + (72 · (𝑃 · 𝑅))))
28 quart.w . . . . 5 (𝜑𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3)))))
29 quart.s . . . . 5 (𝜑𝑆 = ((√‘𝑀) / 2))
30 quart.m . . . . 5 (𝜑𝑀 = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3))
31 quart.t . . . . 5 (𝜑𝑇 = (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3)))
32 quart.t0 . . . . 5 (𝜑𝑇 ≠ 0)
331, 2, 3, 4, 1, 9, 5, 6, 7, 26, 27, 28, 29, 30, 31, 32quartlem3 25037 . . . 4 (𝜑 → (𝑆 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑇 ∈ ℂ))
3433simp1d 1133 . . 3 (𝜑𝑆 ∈ ℂ)
3529oveq2d 6938 . . . . . 6 (𝜑 → (2 · 𝑆) = (2 · ((√‘𝑀) / 2)))
3633simp2d 1134 . . . . . . . 8 (𝜑𝑀 ∈ ℂ)
3736sqrtcld 14584 . . . . . . 7 (𝜑 → (√‘𝑀) ∈ ℂ)
38 2cnd 11453 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
39 2ne0 11486 . . . . . . . 8 2 ≠ 0
4039a1i 11 . . . . . . 7 (𝜑 → 2 ≠ 0)
4137, 38, 40divcan2d 11153 . . . . . 6 (𝜑 → (2 · ((√‘𝑀) / 2)) = (√‘𝑀))
4235, 41eqtrd 2813 . . . . 5 (𝜑 → (2 · 𝑆) = (√‘𝑀))
4342oveq1d 6937 . . . 4 (𝜑 → ((2 · 𝑆)↑2) = ((√‘𝑀)↑2))
4436sqsqrtd 14586 . . . 4 (𝜑 → ((√‘𝑀)↑2) = 𝑀)
4543, 44eqtr2d 2814 . . 3 (𝜑𝑀 = ((2 · 𝑆)↑2))
46 quart.m0 . . 3 (𝜑𝑀 ≠ 0)
47 quart.i . . . . 5 (𝜑𝐼 = (√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆))))
48 quart.j . . . . 5 (𝜑𝐽 = (√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆))))
491, 2, 3, 4, 1, 9, 5, 6, 7, 26, 27, 28, 29, 30, 31, 32, 46, 47, 48quartlem4 25038 . . . 4 (𝜑 → (𝑆 ≠ 0 ∧ 𝐼 ∈ ℂ ∧ 𝐽 ∈ ℂ))
5049simp2d 1134 . . 3 (𝜑𝐼 ∈ ℂ)
5147oveq1d 6937 . . . 4 (𝜑 → (𝐼↑2) = ((√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)))↑2))
5234sqcld 13325 . . . . . . . 8 (𝜑 → (𝑆↑2) ∈ ℂ)
5352negcld 10721 . . . . . . 7 (𝜑 → -(𝑆↑2) ∈ ℂ)
5421halfcld 11627 . . . . . . 7 (𝜑 → (𝑃 / 2) ∈ ℂ)
5553, 54subcld 10734 . . . . . 6 (𝜑 → (-(𝑆↑2) − (𝑃 / 2)) ∈ ℂ)
5622, 12, 14divcld 11151 . . . . . . 7 (𝜑 → (𝑄 / 4) ∈ ℂ)
5749simp1d 1133 . . . . . . 7 (𝜑𝑆 ≠ 0)
5856, 34, 57divcld 11151 . . . . . 6 (𝜑 → ((𝑄 / 4) / 𝑆) ∈ ℂ)
5955, 58addcld 10396 . . . . 5 (𝜑 → ((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)) ∈ ℂ)
6059sqsqrtd 14586 . . . 4 (𝜑 → ((√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)))↑2) = ((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)))
6151, 60eqtrd 2813 . . 3 (𝜑 → (𝐼↑2) = ((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)))
6220simp3d 1135 . . 3 (𝜑𝑅 ∈ ℂ)
63 1cnd 10371 . . . . 5 (𝜑 → 1 ∈ ℂ)
64 3z 11762 . . . . . 6 3 ∈ ℤ
65 1exp 13207 . . . . . 6 (3 ∈ ℤ → (1↑3) = 1)
6664, 65mp1i 13 . . . . 5 (𝜑 → (1↑3) = 1)
6733simp3d 1135 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℂ)
6867mulid2d 10395 . . . . . . . . . 10 (𝜑 → (1 · 𝑇) = 𝑇)
6968oveq2d 6938 . . . . . . . . 9 (𝜑 → ((2 · 𝑃) + (1 · 𝑇)) = ((2 · 𝑃) + 𝑇))
7068oveq2d 6938 . . . . . . . . 9 (𝜑 → (𝑈 / (1 · 𝑇)) = (𝑈 / 𝑇))
7169, 70oveq12d 6940 . . . . . . . 8 (𝜑 → (((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) = (((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)))
7271oveq1d 6937 . . . . . . 7 (𝜑 → ((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3) = ((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3))
7372negeqd 10616 . . . . . 6 (𝜑 → -((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3) = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3))
7430, 73eqtr4d 2816 . . . . 5 (𝜑𝑀 = -((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3))
75 oveq1 6929 . . . . . . . 8 (𝑥 = 1 → (𝑥↑3) = (1↑3))
7675eqeq1d 2779 . . . . . . 7 (𝑥 = 1 → ((𝑥↑3) = 1 ↔ (1↑3) = 1))
77 oveq1 6929 . . . . . . . . . . . 12 (𝑥 = 1 → (𝑥 · 𝑇) = (1 · 𝑇))
7877oveq2d 6938 . . . . . . . . . . 11 (𝑥 = 1 → ((2 · 𝑃) + (𝑥 · 𝑇)) = ((2 · 𝑃) + (1 · 𝑇)))
7977oveq2d 6938 . . . . . . . . . . 11 (𝑥 = 1 → (𝑈 / (𝑥 · 𝑇)) = (𝑈 / (1 · 𝑇)))
8078, 79oveq12d 6940 . . . . . . . . . 10 (𝑥 = 1 → (((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) = (((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))))
8180oveq1d 6937 . . . . . . . . 9 (𝑥 = 1 → ((((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) / 3) = ((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3))
8281negeqd 10616 . . . . . . . 8 (𝑥 = 1 → -((((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) / 3) = -((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3))
8382eqeq2d 2787 . . . . . . 7 (𝑥 = 1 → (𝑀 = -((((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) / 3) ↔ 𝑀 = -((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3)))
8476, 83anbi12d 624 . . . . . 6 (𝑥 = 1 → (((𝑥↑3) = 1 ∧ 𝑀 = -((((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) / 3)) ↔ ((1↑3) = 1 ∧ 𝑀 = -((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3))))
8584rspcev 3510 . . . . 5 ((1 ∈ ℂ ∧ ((1↑3) = 1 ∧ 𝑀 = -((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3))) → ∃𝑥 ∈ ℂ ((𝑥↑3) = 1 ∧ 𝑀 = -((((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) / 3)))
8663, 66, 74, 85syl12anc 827 . . . 4 (𝜑 → ∃𝑥 ∈ ℂ ((𝑥↑3) = 1 ∧ 𝑀 = -((((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) / 3)))
87 2cn 11450 . . . . . 6 2 ∈ ℂ
88 mulcl 10356 . . . . . 6 ((2 ∈ ℂ ∧ 𝑃 ∈ ℂ) → (2 · 𝑃) ∈ ℂ)
8987, 21, 88sylancr 581 . . . . 5 (𝜑 → (2 · 𝑃) ∈ ℂ)
9021sqcld 13325 . . . . . 6 (𝜑 → (𝑃↑2) ∈ ℂ)
91 mulcl 10356 . . . . . . 7 ((4 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (4 · 𝑅) ∈ ℂ)
9211, 62, 91sylancr 581 . . . . . 6 (𝜑 → (4 · 𝑅) ∈ ℂ)
9390, 92subcld 10734 . . . . 5 (𝜑 → ((𝑃↑2) − (4 · 𝑅)) ∈ ℂ)
9422sqcld 13325 . . . . . 6 (𝜑 → (𝑄↑2) ∈ ℂ)
9594negcld 10721 . . . . 5 (𝜑 → -(𝑄↑2) ∈ ℂ)
9631oveq1d 6937 . . . . . 6 (𝜑 → (𝑇↑3) = ((((𝑉 + 𝑊) / 2)↑𝑐(1 / 3))↑3))
971, 2, 3, 4, 1, 9, 5, 6, 7, 26, 27, 28quartlem2 25036 . . . . . . . . . 10 (𝜑 → (𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ ∧ 𝑊 ∈ ℂ))
9897simp2d 1134 . . . . . . . . 9 (𝜑𝑉 ∈ ℂ)
9997simp3d 1135 . . . . . . . . 9 (𝜑𝑊 ∈ ℂ)
10098, 99addcld 10396 . . . . . . . 8 (𝜑 → (𝑉 + 𝑊) ∈ ℂ)
101100halfcld 11627 . . . . . . 7 (𝜑 → ((𝑉 + 𝑊) / 2) ∈ ℂ)
102 3nn 11454 . . . . . . 7 3 ∈ ℕ
103 cxproot 24873 . . . . . . 7 ((((𝑉 + 𝑊) / 2) ∈ ℂ ∧ 3 ∈ ℕ) → ((((𝑉 + 𝑊) / 2)↑𝑐(1 / 3))↑3) = ((𝑉 + 𝑊) / 2))
104101, 102, 103sylancl 580 . . . . . 6 (𝜑 → ((((𝑉 + 𝑊) / 2)↑𝑐(1 / 3))↑3) = ((𝑉 + 𝑊) / 2))
10596, 104eqtrd 2813 . . . . 5 (𝜑 → (𝑇↑3) = ((𝑉 + 𝑊) / 2))
10628oveq1d 6937 . . . . . 6 (𝜑 → (𝑊↑2) = ((√‘((𝑉↑2) − (4 · (𝑈↑3))))↑2))
10798sqcld 13325 . . . . . . . 8 (𝜑 → (𝑉↑2) ∈ ℂ)
10897simp1d 1133 . . . . . . . . . 10 (𝜑𝑈 ∈ ℂ)
109 3nn0 11662 . . . . . . . . . 10 3 ∈ ℕ0
110 expcl 13196 . . . . . . . . . 10 ((𝑈 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑈↑3) ∈ ℂ)
111108, 109, 110sylancl 580 . . . . . . . . 9 (𝜑 → (𝑈↑3) ∈ ℂ)
112 mulcl 10356 . . . . . . . . 9 ((4 ∈ ℂ ∧ (𝑈↑3) ∈ ℂ) → (4 · (𝑈↑3)) ∈ ℂ)
11311, 111, 112sylancr 581 . . . . . . . 8 (𝜑 → (4 · (𝑈↑3)) ∈ ℂ)
114107, 113subcld 10734 . . . . . . 7 (𝜑 → ((𝑉↑2) − (4 · (𝑈↑3))) ∈ ℂ)
115114sqsqrtd 14586 . . . . . 6 (𝜑 → ((√‘((𝑉↑2) − (4 · (𝑈↑3))))↑2) = ((𝑉↑2) − (4 · (𝑈↑3))))
116106, 115eqtrd 2813 . . . . 5 (𝜑 → (𝑊↑2) = ((𝑉↑2) − (4 · (𝑈↑3))))
11721, 22, 62, 26, 27quartlem1 25035 . . . . . 6 (𝜑 → (𝑈 = (((2 · 𝑃)↑2) − (3 · ((𝑃↑2) − (4 · 𝑅)))) ∧ 𝑉 = (((2 · ((2 · 𝑃)↑3)) − (9 · ((2 · 𝑃) · ((𝑃↑2) − (4 · 𝑅))))) + (27 · -(𝑄↑2)))))
118117simpld 490 . . . . 5 (𝜑𝑈 = (((2 · 𝑃)↑2) − (3 · ((𝑃↑2) − (4 · 𝑅)))))
119117simprd 491 . . . . 5 (𝜑𝑉 = (((2 · ((2 · 𝑃)↑3)) − (9 · ((2 · 𝑃) · ((𝑃↑2) − (4 · 𝑅))))) + (27 · -(𝑄↑2))))
12089, 93, 95, 36, 67, 105, 99, 116, 118, 119, 32mcubic 25025 . . . 4 (𝜑 → ((((𝑀↑3) + ((2 · 𝑃) · (𝑀↑2))) + ((((𝑃↑2) − (4 · 𝑅)) · 𝑀) + -(𝑄↑2))) = 0 ↔ ∃𝑥 ∈ ℂ ((𝑥↑3) = 1 ∧ 𝑀 = -((((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) / 3))))
12186, 120mpbird 249 . . 3 (𝜑 → (((𝑀↑3) + ((2 · 𝑃) · (𝑀↑2))) + ((((𝑃↑2) − (4 · 𝑅)) · 𝑀) + -(𝑄↑2))) = 0)
12249simp3d 1135 . . 3 (𝜑𝐽 ∈ ℂ)
12348oveq1d 6937 . . . 4 (𝜑 → (𝐽↑2) = ((√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)))↑2))
12455, 58subcld 10734 . . . . 5 (𝜑 → ((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)) ∈ ℂ)
125124sqsqrtd 14586 . . . 4 (𝜑 → ((√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)))↑2) = ((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)))
126123, 125eqtrd 2813 . . 3 (𝜑 → (𝐽↑2) = ((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)))
12721, 22, 25, 34, 45, 46, 50, 61, 62, 121, 122, 126dquart 25031 . 2 (𝜑 → (((((𝑋𝐸)↑4) + (𝑃 · ((𝑋𝐸)↑2))) + ((𝑄 · (𝑋𝐸)) + 𝑅)) = 0 ↔ (((𝑋𝐸) = (-𝑆 + 𝐼) ∨ (𝑋𝐸) = (-𝑆𝐼)) ∨ ((𝑋𝐸) = (𝑆 + 𝐽) ∨ (𝑋𝐸) = (𝑆𝐽)))))
12834negcld 10721 . . . . . . . 8 (𝜑 → -𝑆 ∈ ℂ)
129128, 50addcld 10396 . . . . . . 7 (𝜑 → (-𝑆 + 𝐼) ∈ ℂ)
1308, 24, 129subaddd 10752 . . . . . 6 (𝜑 → ((𝑋𝐸) = (-𝑆 + 𝐼) ↔ (𝐸 + (-𝑆 + 𝐼)) = 𝑋))
13124, 34negsubd 10740 . . . . . . . . 9 (𝜑 → (𝐸 + -𝑆) = (𝐸𝑆))
132131oveq1d 6937 . . . . . . . 8 (𝜑 → ((𝐸 + -𝑆) + 𝐼) = ((𝐸𝑆) + 𝐼))
13324, 128, 50addassd 10399 . . . . . . . 8 (𝜑 → ((𝐸 + -𝑆) + 𝐼) = (𝐸 + (-𝑆 + 𝐼)))
134132, 133eqtr3d 2815 . . . . . . 7 (𝜑 → ((𝐸𝑆) + 𝐼) = (𝐸 + (-𝑆 + 𝐼)))
135134eqeq1d 2779 . . . . . 6 (𝜑 → (((𝐸𝑆) + 𝐼) = 𝑋 ↔ (𝐸 + (-𝑆 + 𝐼)) = 𝑋))
136130, 135bitr4d 274 . . . . 5 (𝜑 → ((𝑋𝐸) = (-𝑆 + 𝐼) ↔ ((𝐸𝑆) + 𝐼) = 𝑋))
137 eqcom 2784 . . . . 5 (((𝐸𝑆) + 𝐼) = 𝑋𝑋 = ((𝐸𝑆) + 𝐼))
138136, 137syl6bb 279 . . . 4 (𝜑 → ((𝑋𝐸) = (-𝑆 + 𝐼) ↔ 𝑋 = ((𝐸𝑆) + 𝐼)))
139128, 50subcld 10734 . . . . . . 7 (𝜑 → (-𝑆𝐼) ∈ ℂ)
1408, 24, 139subaddd 10752 . . . . . 6 (𝜑 → ((𝑋𝐸) = (-𝑆𝐼) ↔ (𝐸 + (-𝑆𝐼)) = 𝑋))
141131oveq1d 6937 . . . . . . . 8 (𝜑 → ((𝐸 + -𝑆) − 𝐼) = ((𝐸𝑆) − 𝐼))
14224, 128, 50addsubassd 10754 . . . . . . . 8 (𝜑 → ((𝐸 + -𝑆) − 𝐼) = (𝐸 + (-𝑆𝐼)))
143141, 142eqtr3d 2815 . . . . . . 7 (𝜑 → ((𝐸𝑆) − 𝐼) = (𝐸 + (-𝑆𝐼)))
144143eqeq1d 2779 . . . . . 6 (𝜑 → (((𝐸𝑆) − 𝐼) = 𝑋 ↔ (𝐸 + (-𝑆𝐼)) = 𝑋))
145140, 144bitr4d 274 . . . . 5 (𝜑 → ((𝑋𝐸) = (-𝑆𝐼) ↔ ((𝐸𝑆) − 𝐼) = 𝑋))
146 eqcom 2784 . . . . 5 (((𝐸𝑆) − 𝐼) = 𝑋𝑋 = ((𝐸𝑆) − 𝐼))
147145, 146syl6bb 279 . . . 4 (𝜑 → ((𝑋𝐸) = (-𝑆𝐼) ↔ 𝑋 = ((𝐸𝑆) − 𝐼)))
148138, 147orbi12d 905 . . 3 (𝜑 → (((𝑋𝐸) = (-𝑆 + 𝐼) ∨ (𝑋𝐸) = (-𝑆𝐼)) ↔ (𝑋 = ((𝐸𝑆) + 𝐼) ∨ 𝑋 = ((𝐸𝑆) − 𝐼))))
14934, 122addcld 10396 . . . . . . 7 (𝜑 → (𝑆 + 𝐽) ∈ ℂ)
1508, 24, 149subaddd 10752 . . . . . 6 (𝜑 → ((𝑋𝐸) = (𝑆 + 𝐽) ↔ (𝐸 + (𝑆 + 𝐽)) = 𝑋))
15124, 34, 122addassd 10399 . . . . . . 7 (𝜑 → ((𝐸 + 𝑆) + 𝐽) = (𝐸 + (𝑆 + 𝐽)))
152151eqeq1d 2779 . . . . . 6 (𝜑 → (((𝐸 + 𝑆) + 𝐽) = 𝑋 ↔ (𝐸 + (𝑆 + 𝐽)) = 𝑋))
153150, 152bitr4d 274 . . . . 5 (𝜑 → ((𝑋𝐸) = (𝑆 + 𝐽) ↔ ((𝐸 + 𝑆) + 𝐽) = 𝑋))
154 eqcom 2784 . . . . 5 (((𝐸 + 𝑆) + 𝐽) = 𝑋𝑋 = ((𝐸 + 𝑆) + 𝐽))
155153, 154syl6bb 279 . . . 4 (𝜑 → ((𝑋𝐸) = (𝑆 + 𝐽) ↔ 𝑋 = ((𝐸 + 𝑆) + 𝐽)))
15634, 122subcld 10734 . . . . . . 7 (𝜑 → (𝑆𝐽) ∈ ℂ)
1578, 24, 156subaddd 10752 . . . . . 6 (𝜑 → ((𝑋𝐸) = (𝑆𝐽) ↔ (𝐸 + (𝑆𝐽)) = 𝑋))
15824, 34, 122addsubassd 10754 . . . . . . 7 (𝜑 → ((𝐸 + 𝑆) − 𝐽) = (𝐸 + (𝑆𝐽)))
159158eqeq1d 2779 . . . . . 6 (𝜑 → (((𝐸 + 𝑆) − 𝐽) = 𝑋 ↔ (𝐸 + (𝑆𝐽)) = 𝑋))
160157, 159bitr4d 274 . . . . 5 (𝜑 → ((𝑋𝐸) = (𝑆𝐽) ↔ ((𝐸 + 𝑆) − 𝐽) = 𝑋))
161 eqcom 2784 . . . . 5 (((𝐸 + 𝑆) − 𝐽) = 𝑋𝑋 = ((𝐸 + 𝑆) − 𝐽))
162160, 161syl6bb 279 . . . 4 (𝜑 → ((𝑋𝐸) = (𝑆𝐽) ↔ 𝑋 = ((𝐸 + 𝑆) − 𝐽)))
163155, 162orbi12d 905 . . 3 (𝜑 → (((𝑋𝐸) = (𝑆 + 𝐽) ∨ (𝑋𝐸) = (𝑆𝐽)) ↔ (𝑋 = ((𝐸 + 𝑆) + 𝐽) ∨ 𝑋 = ((𝐸 + 𝑆) − 𝐽))))
164148, 163orbi12d 905 . 2 (𝜑 → ((((𝑋𝐸) = (-𝑆 + 𝐼) ∨ (𝑋𝐸) = (-𝑆𝐼)) ∨ ((𝑋𝐸) = (𝑆 + 𝐽) ∨ (𝑋𝐸) = (𝑆𝐽))) ↔ ((𝑋 = ((𝐸𝑆) + 𝐼) ∨ 𝑋 = ((𝐸𝑆) − 𝐼)) ∨ (𝑋 = ((𝐸 + 𝑆) + 𝐽) ∨ 𝑋 = ((𝐸 + 𝑆) − 𝐽)))))
16519, 127, 1643bitrd 297 1 (𝜑 → ((((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((𝐵 · (𝑋↑2)) + ((𝐶 · 𝑋) + 𝐷))) = 0 ↔ ((𝑋 = ((𝐸𝑆) + 𝐼) ∨ 𝑋 = ((𝐸𝑆) − 𝐼)) ∨ (𝑋 = ((𝐸 + 𝑆) + 𝐽) ∨ 𝑋 = ((𝐸 + 𝑆) − 𝐽)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wo 836   = wceq 1601  wcel 2106  wne 2968  wrex 3090  cfv 6135  (class class class)co 6922  cc 10270  0cc0 10272  1c1 10273   + caddc 10275   · cmul 10277  cmin 10606  -cneg 10607   / cdiv 11032  cn 11374  2c2 11430  3c3 11431  4c4 11432  5c5 11433  6c6 11434  7c7 11435  8c8 11436  9c9 11437  0cn0 11642  cz 11728  cdc 11845  cexp 13178  csqrt 14380  𝑐ccxp 24739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-ioc 12492  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-fl 12912  df-mod 12988  df-seq 13120  df-exp 13179  df-fac 13379  df-bc 13408  df-hash 13436  df-shft 14214  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-limsup 14610  df-clim 14627  df-rlim 14628  df-sum 14825  df-ef 15200  df-sin 15202  df-cos 15203  df-pi 15205  df-dvds 15388  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-rest 16469  df-topn 16470  df-0g 16488  df-gsum 16489  df-topgen 16490  df-pt 16491  df-prds 16494  df-xrs 16548  df-qtop 16553  df-imas 16554  df-xps 16556  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-mulg 17928  df-cntz 18133  df-cmn 18581  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-fbas 20139  df-fg 20140  df-cnfld 20143  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cld 21231  df-ntr 21232  df-cls 21233  df-nei 21310  df-lp 21348  df-perf 21349  df-cn 21439  df-cnp 21440  df-haus 21527  df-tx 21774  df-hmeo 21967  df-fil 22058  df-fm 22150  df-flim 22151  df-flf 22152  df-xms 22533  df-ms 22534  df-tms 22535  df-cncf 23089  df-limc 24067  df-dv 24068  df-log 24740  df-cxp 24741
This theorem is referenced by:  quartfull  31746
  Copyright terms: Public domain W3C validator