MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quart Structured version   Visualization version   GIF version

Theorem quart 26211
Description: The quartic equation, writing out all roots using square and cube root functions so that only direct substitutions remain, and we can actually claim to have a "quartic equation". Naturally, this theorem is ridiculously long (see quartfull 33759) if all the substitutions are performed. This is Metamath 100 proof #46. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
quart.a (𝜑𝐴 ∈ ℂ)
quart.b (𝜑𝐵 ∈ ℂ)
quart.c (𝜑𝐶 ∈ ℂ)
quart.d (𝜑𝐷 ∈ ℂ)
quart.x (𝜑𝑋 ∈ ℂ)
quart.e (𝜑𝐸 = -(𝐴 / 4))
quart.p (𝜑𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2))))
quart.q (𝜑𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)))
quart.r (𝜑𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))))
quart.u (𝜑𝑈 = ((𝑃↑2) + (12 · 𝑅)))
quart.v (𝜑𝑉 = ((-(2 · (𝑃↑3)) − (27 · (𝑄↑2))) + (72 · (𝑃 · 𝑅))))
quart.w (𝜑𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3)))))
quart.s (𝜑𝑆 = ((√‘𝑀) / 2))
quart.m (𝜑𝑀 = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3))
quart.t (𝜑𝑇 = (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3)))
quart.t0 (𝜑𝑇 ≠ 0)
quart.m0 (𝜑𝑀 ≠ 0)
quart.i (𝜑𝐼 = (√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆))))
quart.j (𝜑𝐽 = (√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆))))
Assertion
Ref Expression
quart (𝜑 → ((((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((𝐵 · (𝑋↑2)) + ((𝐶 · 𝑋) + 𝐷))) = 0 ↔ ((𝑋 = ((𝐸𝑆) + 𝐼) ∨ 𝑋 = ((𝐸𝑆) − 𝐼)) ∨ (𝑋 = ((𝐸 + 𝑆) + 𝐽) ∨ 𝑋 = ((𝐸 + 𝑆) − 𝐽)))))

Proof of Theorem quart
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 quart.a . . . 4 (𝜑𝐴 ∈ ℂ)
2 quart.b . . . 4 (𝜑𝐵 ∈ ℂ)
3 quart.c . . . 4 (𝜑𝐶 ∈ ℂ)
4 quart.d . . . 4 (𝜑𝐷 ∈ ℂ)
5 quart.p . . . 4 (𝜑𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2))))
6 quart.q . . . 4 (𝜑𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)))
7 quart.r . . . 4 (𝜑𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))))
8 quart.x . . . 4 (𝜑𝑋 ∈ ℂ)
9 quart.e . . . . . 6 (𝜑𝐸 = -(𝐴 / 4))
109oveq2d 7373 . . . . 5 (𝜑 → (𝑋𝐸) = (𝑋 − -(𝐴 / 4)))
11 4cn 12238 . . . . . . . 8 4 ∈ ℂ
1211a1i 11 . . . . . . 7 (𝜑 → 4 ∈ ℂ)
13 4ne0 12261 . . . . . . . 8 4 ≠ 0
1413a1i 11 . . . . . . 7 (𝜑 → 4 ≠ 0)
151, 12, 14divcld 11931 . . . . . 6 (𝜑 → (𝐴 / 4) ∈ ℂ)
168, 15subnegd 11519 . . . . 5 (𝜑 → (𝑋 − -(𝐴 / 4)) = (𝑋 + (𝐴 / 4)))
1710, 16eqtrd 2776 . . . 4 (𝜑 → (𝑋𝐸) = (𝑋 + (𝐴 / 4)))
181, 2, 3, 4, 5, 6, 7, 8, 17quart1 26206 . . 3 (𝜑 → (((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((𝐵 · (𝑋↑2)) + ((𝐶 · 𝑋) + 𝐷))) = ((((𝑋𝐸)↑4) + (𝑃 · ((𝑋𝐸)↑2))) + ((𝑄 · (𝑋𝐸)) + 𝑅)))
1918eqeq1d 2738 . 2 (𝜑 → ((((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((𝐵 · (𝑋↑2)) + ((𝐶 · 𝑋) + 𝐷))) = 0 ↔ ((((𝑋𝐸)↑4) + (𝑃 · ((𝑋𝐸)↑2))) + ((𝑄 · (𝑋𝐸)) + 𝑅)) = 0))
201, 2, 3, 4, 5, 6, 7quart1cl 26204 . . . 4 (𝜑 → (𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ))
2120simp1d 1142 . . 3 (𝜑𝑃 ∈ ℂ)
2220simp2d 1143 . . 3 (𝜑𝑄 ∈ ℂ)
2315negcld 11499 . . . . 5 (𝜑 → -(𝐴 / 4) ∈ ℂ)
249, 23eqeltrd 2838 . . . 4 (𝜑𝐸 ∈ ℂ)
258, 24subcld 11512 . . 3 (𝜑 → (𝑋𝐸) ∈ ℂ)
26 quart.u . . . . 5 (𝜑𝑈 = ((𝑃↑2) + (12 · 𝑅)))
27 quart.v . . . . 5 (𝜑𝑉 = ((-(2 · (𝑃↑3)) − (27 · (𝑄↑2))) + (72 · (𝑃 · 𝑅))))
28 quart.w . . . . 5 (𝜑𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3)))))
29 quart.s . . . . 5 (𝜑𝑆 = ((√‘𝑀) / 2))
30 quart.m . . . . 5 (𝜑𝑀 = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3))
31 quart.t . . . . 5 (𝜑𝑇 = (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3)))
32 quart.t0 . . . . 5 (𝜑𝑇 ≠ 0)
331, 2, 3, 4, 1, 9, 5, 6, 7, 26, 27, 28, 29, 30, 31, 32quartlem3 26209 . . . 4 (𝜑 → (𝑆 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑇 ∈ ℂ))
3433simp1d 1142 . . 3 (𝜑𝑆 ∈ ℂ)
3529oveq2d 7373 . . . . . 6 (𝜑 → (2 · 𝑆) = (2 · ((√‘𝑀) / 2)))
3633simp2d 1143 . . . . . . . 8 (𝜑𝑀 ∈ ℂ)
3736sqrtcld 15322 . . . . . . 7 (𝜑 → (√‘𝑀) ∈ ℂ)
38 2cnd 12231 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
39 2ne0 12257 . . . . . . . 8 2 ≠ 0
4039a1i 11 . . . . . . 7 (𝜑 → 2 ≠ 0)
4137, 38, 40divcan2d 11933 . . . . . 6 (𝜑 → (2 · ((√‘𝑀) / 2)) = (√‘𝑀))
4235, 41eqtrd 2776 . . . . 5 (𝜑 → (2 · 𝑆) = (√‘𝑀))
4342oveq1d 7372 . . . 4 (𝜑 → ((2 · 𝑆)↑2) = ((√‘𝑀)↑2))
4436sqsqrtd 15324 . . . 4 (𝜑 → ((√‘𝑀)↑2) = 𝑀)
4543, 44eqtr2d 2777 . . 3 (𝜑𝑀 = ((2 · 𝑆)↑2))
46 quart.m0 . . 3 (𝜑𝑀 ≠ 0)
47 quart.i . . . . 5 (𝜑𝐼 = (√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆))))
48 quart.j . . . . 5 (𝜑𝐽 = (√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆))))
491, 2, 3, 4, 1, 9, 5, 6, 7, 26, 27, 28, 29, 30, 31, 32, 46, 47, 48quartlem4 26210 . . . 4 (𝜑 → (𝑆 ≠ 0 ∧ 𝐼 ∈ ℂ ∧ 𝐽 ∈ ℂ))
5049simp2d 1143 . . 3 (𝜑𝐼 ∈ ℂ)
5147oveq1d 7372 . . . 4 (𝜑 → (𝐼↑2) = ((√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)))↑2))
5234sqcld 14049 . . . . . . . 8 (𝜑 → (𝑆↑2) ∈ ℂ)
5352negcld 11499 . . . . . . 7 (𝜑 → -(𝑆↑2) ∈ ℂ)
5421halfcld 12398 . . . . . . 7 (𝜑 → (𝑃 / 2) ∈ ℂ)
5553, 54subcld 11512 . . . . . 6 (𝜑 → (-(𝑆↑2) − (𝑃 / 2)) ∈ ℂ)
5622, 12, 14divcld 11931 . . . . . . 7 (𝜑 → (𝑄 / 4) ∈ ℂ)
5749simp1d 1142 . . . . . . 7 (𝜑𝑆 ≠ 0)
5856, 34, 57divcld 11931 . . . . . 6 (𝜑 → ((𝑄 / 4) / 𝑆) ∈ ℂ)
5955, 58addcld 11174 . . . . 5 (𝜑 → ((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)) ∈ ℂ)
6059sqsqrtd 15324 . . . 4 (𝜑 → ((√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)))↑2) = ((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)))
6151, 60eqtrd 2776 . . 3 (𝜑 → (𝐼↑2) = ((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)))
6220simp3d 1144 . . 3 (𝜑𝑅 ∈ ℂ)
63 1cnd 11150 . . . . 5 (𝜑 → 1 ∈ ℂ)
64 3z 12536 . . . . . 6 3 ∈ ℤ
65 1exp 13997 . . . . . 6 (3 ∈ ℤ → (1↑3) = 1)
6664, 65mp1i 13 . . . . 5 (𝜑 → (1↑3) = 1)
6733simp3d 1144 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℂ)
6867mulid2d 11173 . . . . . . . . . 10 (𝜑 → (1 · 𝑇) = 𝑇)
6968oveq2d 7373 . . . . . . . . 9 (𝜑 → ((2 · 𝑃) + (1 · 𝑇)) = ((2 · 𝑃) + 𝑇))
7068oveq2d 7373 . . . . . . . . 9 (𝜑 → (𝑈 / (1 · 𝑇)) = (𝑈 / 𝑇))
7169, 70oveq12d 7375 . . . . . . . 8 (𝜑 → (((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) = (((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)))
7271oveq1d 7372 . . . . . . 7 (𝜑 → ((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3) = ((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3))
7372negeqd 11395 . . . . . 6 (𝜑 → -((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3) = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3))
7430, 73eqtr4d 2779 . . . . 5 (𝜑𝑀 = -((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3))
75 oveq1 7364 . . . . . . . 8 (𝑥 = 1 → (𝑥↑3) = (1↑3))
7675eqeq1d 2738 . . . . . . 7 (𝑥 = 1 → ((𝑥↑3) = 1 ↔ (1↑3) = 1))
77 oveq1 7364 . . . . . . . . . . . 12 (𝑥 = 1 → (𝑥 · 𝑇) = (1 · 𝑇))
7877oveq2d 7373 . . . . . . . . . . 11 (𝑥 = 1 → ((2 · 𝑃) + (𝑥 · 𝑇)) = ((2 · 𝑃) + (1 · 𝑇)))
7977oveq2d 7373 . . . . . . . . . . 11 (𝑥 = 1 → (𝑈 / (𝑥 · 𝑇)) = (𝑈 / (1 · 𝑇)))
8078, 79oveq12d 7375 . . . . . . . . . 10 (𝑥 = 1 → (((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) = (((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))))
8180oveq1d 7372 . . . . . . . . 9 (𝑥 = 1 → ((((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) / 3) = ((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3))
8281negeqd 11395 . . . . . . . 8 (𝑥 = 1 → -((((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) / 3) = -((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3))
8382eqeq2d 2747 . . . . . . 7 (𝑥 = 1 → (𝑀 = -((((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) / 3) ↔ 𝑀 = -((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3)))
8476, 83anbi12d 631 . . . . . 6 (𝑥 = 1 → (((𝑥↑3) = 1 ∧ 𝑀 = -((((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) / 3)) ↔ ((1↑3) = 1 ∧ 𝑀 = -((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3))))
8584rspcev 3581 . . . . 5 ((1 ∈ ℂ ∧ ((1↑3) = 1 ∧ 𝑀 = -((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3))) → ∃𝑥 ∈ ℂ ((𝑥↑3) = 1 ∧ 𝑀 = -((((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) / 3)))
8663, 66, 74, 85syl12anc 835 . . . 4 (𝜑 → ∃𝑥 ∈ ℂ ((𝑥↑3) = 1 ∧ 𝑀 = -((((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) / 3)))
87 2cn 12228 . . . . . 6 2 ∈ ℂ
88 mulcl 11135 . . . . . 6 ((2 ∈ ℂ ∧ 𝑃 ∈ ℂ) → (2 · 𝑃) ∈ ℂ)
8987, 21, 88sylancr 587 . . . . 5 (𝜑 → (2 · 𝑃) ∈ ℂ)
9021sqcld 14049 . . . . . 6 (𝜑 → (𝑃↑2) ∈ ℂ)
91 mulcl 11135 . . . . . . 7 ((4 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (4 · 𝑅) ∈ ℂ)
9211, 62, 91sylancr 587 . . . . . 6 (𝜑 → (4 · 𝑅) ∈ ℂ)
9390, 92subcld 11512 . . . . 5 (𝜑 → ((𝑃↑2) − (4 · 𝑅)) ∈ ℂ)
9422sqcld 14049 . . . . . 6 (𝜑 → (𝑄↑2) ∈ ℂ)
9594negcld 11499 . . . . 5 (𝜑 → -(𝑄↑2) ∈ ℂ)
9631oveq1d 7372 . . . . . 6 (𝜑 → (𝑇↑3) = ((((𝑉 + 𝑊) / 2)↑𝑐(1 / 3))↑3))
971, 2, 3, 4, 1, 9, 5, 6, 7, 26, 27, 28quartlem2 26208 . . . . . . . . . 10 (𝜑 → (𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ ∧ 𝑊 ∈ ℂ))
9897simp2d 1143 . . . . . . . . 9 (𝜑𝑉 ∈ ℂ)
9997simp3d 1144 . . . . . . . . 9 (𝜑𝑊 ∈ ℂ)
10098, 99addcld 11174 . . . . . . . 8 (𝜑 → (𝑉 + 𝑊) ∈ ℂ)
101100halfcld 12398 . . . . . . 7 (𝜑 → ((𝑉 + 𝑊) / 2) ∈ ℂ)
102 3nn 12232 . . . . . . 7 3 ∈ ℕ
103 cxproot 26045 . . . . . . 7 ((((𝑉 + 𝑊) / 2) ∈ ℂ ∧ 3 ∈ ℕ) → ((((𝑉 + 𝑊) / 2)↑𝑐(1 / 3))↑3) = ((𝑉 + 𝑊) / 2))
104101, 102, 103sylancl 586 . . . . . 6 (𝜑 → ((((𝑉 + 𝑊) / 2)↑𝑐(1 / 3))↑3) = ((𝑉 + 𝑊) / 2))
10596, 104eqtrd 2776 . . . . 5 (𝜑 → (𝑇↑3) = ((𝑉 + 𝑊) / 2))
10628oveq1d 7372 . . . . . 6 (𝜑 → (𝑊↑2) = ((√‘((𝑉↑2) − (4 · (𝑈↑3))))↑2))
10798sqcld 14049 . . . . . . . 8 (𝜑 → (𝑉↑2) ∈ ℂ)
10897simp1d 1142 . . . . . . . . . 10 (𝜑𝑈 ∈ ℂ)
109 3nn0 12431 . . . . . . . . . 10 3 ∈ ℕ0
110 expcl 13985 . . . . . . . . . 10 ((𝑈 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑈↑3) ∈ ℂ)
111108, 109, 110sylancl 586 . . . . . . . . 9 (𝜑 → (𝑈↑3) ∈ ℂ)
112 mulcl 11135 . . . . . . . . 9 ((4 ∈ ℂ ∧ (𝑈↑3) ∈ ℂ) → (4 · (𝑈↑3)) ∈ ℂ)
11311, 111, 112sylancr 587 . . . . . . . 8 (𝜑 → (4 · (𝑈↑3)) ∈ ℂ)
114107, 113subcld 11512 . . . . . . 7 (𝜑 → ((𝑉↑2) − (4 · (𝑈↑3))) ∈ ℂ)
115114sqsqrtd 15324 . . . . . 6 (𝜑 → ((√‘((𝑉↑2) − (4 · (𝑈↑3))))↑2) = ((𝑉↑2) − (4 · (𝑈↑3))))
116106, 115eqtrd 2776 . . . . 5 (𝜑 → (𝑊↑2) = ((𝑉↑2) − (4 · (𝑈↑3))))
11721, 22, 62, 26, 27quartlem1 26207 . . . . . 6 (𝜑 → (𝑈 = (((2 · 𝑃)↑2) − (3 · ((𝑃↑2) − (4 · 𝑅)))) ∧ 𝑉 = (((2 · ((2 · 𝑃)↑3)) − (9 · ((2 · 𝑃) · ((𝑃↑2) − (4 · 𝑅))))) + (27 · -(𝑄↑2)))))
118117simpld 495 . . . . 5 (𝜑𝑈 = (((2 · 𝑃)↑2) − (3 · ((𝑃↑2) − (4 · 𝑅)))))
119117simprd 496 . . . . 5 (𝜑𝑉 = (((2 · ((2 · 𝑃)↑3)) − (9 · ((2 · 𝑃) · ((𝑃↑2) − (4 · 𝑅))))) + (27 · -(𝑄↑2))))
12089, 93, 95, 36, 67, 105, 99, 116, 118, 119, 32mcubic 26197 . . . 4 (𝜑 → ((((𝑀↑3) + ((2 · 𝑃) · (𝑀↑2))) + ((((𝑃↑2) − (4 · 𝑅)) · 𝑀) + -(𝑄↑2))) = 0 ↔ ∃𝑥 ∈ ℂ ((𝑥↑3) = 1 ∧ 𝑀 = -((((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) / 3))))
12186, 120mpbird 256 . . 3 (𝜑 → (((𝑀↑3) + ((2 · 𝑃) · (𝑀↑2))) + ((((𝑃↑2) − (4 · 𝑅)) · 𝑀) + -(𝑄↑2))) = 0)
12249simp3d 1144 . . 3 (𝜑𝐽 ∈ ℂ)
12348oveq1d 7372 . . . 4 (𝜑 → (𝐽↑2) = ((√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)))↑2))
12455, 58subcld 11512 . . . . 5 (𝜑 → ((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)) ∈ ℂ)
125124sqsqrtd 15324 . . . 4 (𝜑 → ((√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)))↑2) = ((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)))
126123, 125eqtrd 2776 . . 3 (𝜑 → (𝐽↑2) = ((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)))
12721, 22, 25, 34, 45, 46, 50, 61, 62, 121, 122, 126dquart 26203 . 2 (𝜑 → (((((𝑋𝐸)↑4) + (𝑃 · ((𝑋𝐸)↑2))) + ((𝑄 · (𝑋𝐸)) + 𝑅)) = 0 ↔ (((𝑋𝐸) = (-𝑆 + 𝐼) ∨ (𝑋𝐸) = (-𝑆𝐼)) ∨ ((𝑋𝐸) = (𝑆 + 𝐽) ∨ (𝑋𝐸) = (𝑆𝐽)))))
12834negcld 11499 . . . . . . . 8 (𝜑 → -𝑆 ∈ ℂ)
129128, 50addcld 11174 . . . . . . 7 (𝜑 → (-𝑆 + 𝐼) ∈ ℂ)
1308, 24, 129subaddd 11530 . . . . . 6 (𝜑 → ((𝑋𝐸) = (-𝑆 + 𝐼) ↔ (𝐸 + (-𝑆 + 𝐼)) = 𝑋))
13124, 34negsubd 11518 . . . . . . . . 9 (𝜑 → (𝐸 + -𝑆) = (𝐸𝑆))
132131oveq1d 7372 . . . . . . . 8 (𝜑 → ((𝐸 + -𝑆) + 𝐼) = ((𝐸𝑆) + 𝐼))
13324, 128, 50addassd 11177 . . . . . . . 8 (𝜑 → ((𝐸 + -𝑆) + 𝐼) = (𝐸 + (-𝑆 + 𝐼)))
134132, 133eqtr3d 2778 . . . . . . 7 (𝜑 → ((𝐸𝑆) + 𝐼) = (𝐸 + (-𝑆 + 𝐼)))
135134eqeq1d 2738 . . . . . 6 (𝜑 → (((𝐸𝑆) + 𝐼) = 𝑋 ↔ (𝐸 + (-𝑆 + 𝐼)) = 𝑋))
136130, 135bitr4d 281 . . . . 5 (𝜑 → ((𝑋𝐸) = (-𝑆 + 𝐼) ↔ ((𝐸𝑆) + 𝐼) = 𝑋))
137 eqcom 2743 . . . . 5 (((𝐸𝑆) + 𝐼) = 𝑋𝑋 = ((𝐸𝑆) + 𝐼))
138136, 137bitrdi 286 . . . 4 (𝜑 → ((𝑋𝐸) = (-𝑆 + 𝐼) ↔ 𝑋 = ((𝐸𝑆) + 𝐼)))
139128, 50subcld 11512 . . . . . . 7 (𝜑 → (-𝑆𝐼) ∈ ℂ)
1408, 24, 139subaddd 11530 . . . . . 6 (𝜑 → ((𝑋𝐸) = (-𝑆𝐼) ↔ (𝐸 + (-𝑆𝐼)) = 𝑋))
141131oveq1d 7372 . . . . . . . 8 (𝜑 → ((𝐸 + -𝑆) − 𝐼) = ((𝐸𝑆) − 𝐼))
14224, 128, 50addsubassd 11532 . . . . . . . 8 (𝜑 → ((𝐸 + -𝑆) − 𝐼) = (𝐸 + (-𝑆𝐼)))
143141, 142eqtr3d 2778 . . . . . . 7 (𝜑 → ((𝐸𝑆) − 𝐼) = (𝐸 + (-𝑆𝐼)))
144143eqeq1d 2738 . . . . . 6 (𝜑 → (((𝐸𝑆) − 𝐼) = 𝑋 ↔ (𝐸 + (-𝑆𝐼)) = 𝑋))
145140, 144bitr4d 281 . . . . 5 (𝜑 → ((𝑋𝐸) = (-𝑆𝐼) ↔ ((𝐸𝑆) − 𝐼) = 𝑋))
146 eqcom 2743 . . . . 5 (((𝐸𝑆) − 𝐼) = 𝑋𝑋 = ((𝐸𝑆) − 𝐼))
147145, 146bitrdi 286 . . . 4 (𝜑 → ((𝑋𝐸) = (-𝑆𝐼) ↔ 𝑋 = ((𝐸𝑆) − 𝐼)))
148138, 147orbi12d 917 . . 3 (𝜑 → (((𝑋𝐸) = (-𝑆 + 𝐼) ∨ (𝑋𝐸) = (-𝑆𝐼)) ↔ (𝑋 = ((𝐸𝑆) + 𝐼) ∨ 𝑋 = ((𝐸𝑆) − 𝐼))))
14934, 122addcld 11174 . . . . . . 7 (𝜑 → (𝑆 + 𝐽) ∈ ℂ)
1508, 24, 149subaddd 11530 . . . . . 6 (𝜑 → ((𝑋𝐸) = (𝑆 + 𝐽) ↔ (𝐸 + (𝑆 + 𝐽)) = 𝑋))
15124, 34, 122addassd 11177 . . . . . . 7 (𝜑 → ((𝐸 + 𝑆) + 𝐽) = (𝐸 + (𝑆 + 𝐽)))
152151eqeq1d 2738 . . . . . 6 (𝜑 → (((𝐸 + 𝑆) + 𝐽) = 𝑋 ↔ (𝐸 + (𝑆 + 𝐽)) = 𝑋))
153150, 152bitr4d 281 . . . . 5 (𝜑 → ((𝑋𝐸) = (𝑆 + 𝐽) ↔ ((𝐸 + 𝑆) + 𝐽) = 𝑋))
154 eqcom 2743 . . . . 5 (((𝐸 + 𝑆) + 𝐽) = 𝑋𝑋 = ((𝐸 + 𝑆) + 𝐽))
155153, 154bitrdi 286 . . . 4 (𝜑 → ((𝑋𝐸) = (𝑆 + 𝐽) ↔ 𝑋 = ((𝐸 + 𝑆) + 𝐽)))
15634, 122subcld 11512 . . . . . . 7 (𝜑 → (𝑆𝐽) ∈ ℂ)
1578, 24, 156subaddd 11530 . . . . . 6 (𝜑 → ((𝑋𝐸) = (𝑆𝐽) ↔ (𝐸 + (𝑆𝐽)) = 𝑋))
15824, 34, 122addsubassd 11532 . . . . . . 7 (𝜑 → ((𝐸 + 𝑆) − 𝐽) = (𝐸 + (𝑆𝐽)))
159158eqeq1d 2738 . . . . . 6 (𝜑 → (((𝐸 + 𝑆) − 𝐽) = 𝑋 ↔ (𝐸 + (𝑆𝐽)) = 𝑋))
160157, 159bitr4d 281 . . . . 5 (𝜑 → ((𝑋𝐸) = (𝑆𝐽) ↔ ((𝐸 + 𝑆) − 𝐽) = 𝑋))
161 eqcom 2743 . . . . 5 (((𝐸 + 𝑆) − 𝐽) = 𝑋𝑋 = ((𝐸 + 𝑆) − 𝐽))
162160, 161bitrdi 286 . . . 4 (𝜑 → ((𝑋𝐸) = (𝑆𝐽) ↔ 𝑋 = ((𝐸 + 𝑆) − 𝐽)))
163155, 162orbi12d 917 . . 3 (𝜑 → (((𝑋𝐸) = (𝑆 + 𝐽) ∨ (𝑋𝐸) = (𝑆𝐽)) ↔ (𝑋 = ((𝐸 + 𝑆) + 𝐽) ∨ 𝑋 = ((𝐸 + 𝑆) − 𝐽))))
164148, 163orbi12d 917 . 2 (𝜑 → ((((𝑋𝐸) = (-𝑆 + 𝐼) ∨ (𝑋𝐸) = (-𝑆𝐼)) ∨ ((𝑋𝐸) = (𝑆 + 𝐽) ∨ (𝑋𝐸) = (𝑆𝐽))) ↔ ((𝑋 = ((𝐸𝑆) + 𝐼) ∨ 𝑋 = ((𝐸𝑆) − 𝐼)) ∨ (𝑋 = ((𝐸 + 𝑆) + 𝐽) ∨ 𝑋 = ((𝐸 + 𝑆) − 𝐽)))))
16519, 127, 1643bitrd 304 1 (𝜑 → ((((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((𝐵 · (𝑋↑2)) + ((𝐶 · 𝑋) + 𝐷))) = 0 ↔ ((𝑋 = ((𝐸𝑆) + 𝐼) ∨ 𝑋 = ((𝐸𝑆) − 𝐼)) ∨ (𝑋 = ((𝐸 + 𝑆) + 𝐽) ∨ 𝑋 = ((𝐸 + 𝑆) − 𝐽)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2943  wrex 3073  cfv 6496  (class class class)co 7357  cc 11049  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  cmin 11385  -cneg 11386   / cdiv 11812  cn 12153  2c2 12208  3c3 12209  4c4 12210  5c5 12211  6c6 12212  7c7 12213  8c8 12214  9c9 12215  0cn0 12413  cz 12499  cdc 12618  cexp 13967  csqrt 15118  𝑐ccxp 25911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-dvds 16137  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912  df-cxp 25913
This theorem is referenced by:  quartfull  33759
  Copyright terms: Public domain W3C validator