MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quart Structured version   Visualization version   GIF version

Theorem quart 26808
Description: The quartic equation, writing out all roots using square and cube root functions so that only direct substitutions remain, and we can actually claim to have a "quartic equation". Naturally, this theorem is ridiculously long (see quartfull 35220) if all the substitutions are performed. This is Metamath 100 proof #46. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
quart.a (𝜑𝐴 ∈ ℂ)
quart.b (𝜑𝐵 ∈ ℂ)
quart.c (𝜑𝐶 ∈ ℂ)
quart.d (𝜑𝐷 ∈ ℂ)
quart.x (𝜑𝑋 ∈ ℂ)
quart.e (𝜑𝐸 = -(𝐴 / 4))
quart.p (𝜑𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2))))
quart.q (𝜑𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)))
quart.r (𝜑𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))))
quart.u (𝜑𝑈 = ((𝑃↑2) + (12 · 𝑅)))
quart.v (𝜑𝑉 = ((-(2 · (𝑃↑3)) − (27 · (𝑄↑2))) + (72 · (𝑃 · 𝑅))))
quart.w (𝜑𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3)))))
quart.s (𝜑𝑆 = ((√‘𝑀) / 2))
quart.m (𝜑𝑀 = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3))
quart.t (𝜑𝑇 = (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3)))
quart.t0 (𝜑𝑇 ≠ 0)
quart.m0 (𝜑𝑀 ≠ 0)
quart.i (𝜑𝐼 = (√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆))))
quart.j (𝜑𝐽 = (√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆))))
Assertion
Ref Expression
quart (𝜑 → ((((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((𝐵 · (𝑋↑2)) + ((𝐶 · 𝑋) + 𝐷))) = 0 ↔ ((𝑋 = ((𝐸𝑆) + 𝐼) ∨ 𝑋 = ((𝐸𝑆) − 𝐼)) ∨ (𝑋 = ((𝐸 + 𝑆) + 𝐽) ∨ 𝑋 = ((𝐸 + 𝑆) − 𝐽)))))

Proof of Theorem quart
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 quart.a . . . 4 (𝜑𝐴 ∈ ℂ)
2 quart.b . . . 4 (𝜑𝐵 ∈ ℂ)
3 quart.c . . . 4 (𝜑𝐶 ∈ ℂ)
4 quart.d . . . 4 (𝜑𝐷 ∈ ℂ)
5 quart.p . . . 4 (𝜑𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2))))
6 quart.q . . . 4 (𝜑𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)))
7 quart.r . . . 4 (𝜑𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))))
8 quart.x . . . 4 (𝜑𝑋 ∈ ℂ)
9 quart.e . . . . . 6 (𝜑𝐸 = -(𝐴 / 4))
109oveq2d 7371 . . . . 5 (𝜑 → (𝑋𝐸) = (𝑋 − -(𝐴 / 4)))
11 4cn 12220 . . . . . . . 8 4 ∈ ℂ
1211a1i 11 . . . . . . 7 (𝜑 → 4 ∈ ℂ)
13 4ne0 12243 . . . . . . . 8 4 ≠ 0
1413a1i 11 . . . . . . 7 (𝜑 → 4 ≠ 0)
151, 12, 14divcld 11907 . . . . . 6 (𝜑 → (𝐴 / 4) ∈ ℂ)
168, 15subnegd 11489 . . . . 5 (𝜑 → (𝑋 − -(𝐴 / 4)) = (𝑋 + (𝐴 / 4)))
1710, 16eqtrd 2768 . . . 4 (𝜑 → (𝑋𝐸) = (𝑋 + (𝐴 / 4)))
181, 2, 3, 4, 5, 6, 7, 8, 17quart1 26803 . . 3 (𝜑 → (((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((𝐵 · (𝑋↑2)) + ((𝐶 · 𝑋) + 𝐷))) = ((((𝑋𝐸)↑4) + (𝑃 · ((𝑋𝐸)↑2))) + ((𝑄 · (𝑋𝐸)) + 𝑅)))
1918eqeq1d 2735 . 2 (𝜑 → ((((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((𝐵 · (𝑋↑2)) + ((𝐶 · 𝑋) + 𝐷))) = 0 ↔ ((((𝑋𝐸)↑4) + (𝑃 · ((𝑋𝐸)↑2))) + ((𝑄 · (𝑋𝐸)) + 𝑅)) = 0))
201, 2, 3, 4, 5, 6, 7quart1cl 26801 . . . 4 (𝜑 → (𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ))
2120simp1d 1142 . . 3 (𝜑𝑃 ∈ ℂ)
2220simp2d 1143 . . 3 (𝜑𝑄 ∈ ℂ)
2315negcld 11469 . . . . 5 (𝜑 → -(𝐴 / 4) ∈ ℂ)
249, 23eqeltrd 2833 . . . 4 (𝜑𝐸 ∈ ℂ)
258, 24subcld 11482 . . 3 (𝜑 → (𝑋𝐸) ∈ ℂ)
26 quart.u . . . . 5 (𝜑𝑈 = ((𝑃↑2) + (12 · 𝑅)))
27 quart.v . . . . 5 (𝜑𝑉 = ((-(2 · (𝑃↑3)) − (27 · (𝑄↑2))) + (72 · (𝑃 · 𝑅))))
28 quart.w . . . . 5 (𝜑𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3)))))
29 quart.s . . . . 5 (𝜑𝑆 = ((√‘𝑀) / 2))
30 quart.m . . . . 5 (𝜑𝑀 = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3))
31 quart.t . . . . 5 (𝜑𝑇 = (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3)))
32 quart.t0 . . . . 5 (𝜑𝑇 ≠ 0)
331, 2, 3, 4, 1, 9, 5, 6, 7, 26, 27, 28, 29, 30, 31, 32quartlem3 26806 . . . 4 (𝜑 → (𝑆 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑇 ∈ ℂ))
3433simp1d 1142 . . 3 (𝜑𝑆 ∈ ℂ)
3529oveq2d 7371 . . . . . 6 (𝜑 → (2 · 𝑆) = (2 · ((√‘𝑀) / 2)))
3633simp2d 1143 . . . . . . . 8 (𝜑𝑀 ∈ ℂ)
3736sqrtcld 15357 . . . . . . 7 (𝜑 → (√‘𝑀) ∈ ℂ)
38 2cnd 12213 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
39 2ne0 12239 . . . . . . . 8 2 ≠ 0
4039a1i 11 . . . . . . 7 (𝜑 → 2 ≠ 0)
4137, 38, 40divcan2d 11909 . . . . . 6 (𝜑 → (2 · ((√‘𝑀) / 2)) = (√‘𝑀))
4235, 41eqtrd 2768 . . . . 5 (𝜑 → (2 · 𝑆) = (√‘𝑀))
4342oveq1d 7370 . . . 4 (𝜑 → ((2 · 𝑆)↑2) = ((√‘𝑀)↑2))
4436sqsqrtd 15359 . . . 4 (𝜑 → ((√‘𝑀)↑2) = 𝑀)
4543, 44eqtr2d 2769 . . 3 (𝜑𝑀 = ((2 · 𝑆)↑2))
46 quart.m0 . . 3 (𝜑𝑀 ≠ 0)
47 quart.i . . . . 5 (𝜑𝐼 = (√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆))))
48 quart.j . . . . 5 (𝜑𝐽 = (√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆))))
491, 2, 3, 4, 1, 9, 5, 6, 7, 26, 27, 28, 29, 30, 31, 32, 46, 47, 48quartlem4 26807 . . . 4 (𝜑 → (𝑆 ≠ 0 ∧ 𝐼 ∈ ℂ ∧ 𝐽 ∈ ℂ))
5049simp2d 1143 . . 3 (𝜑𝐼 ∈ ℂ)
5147oveq1d 7370 . . . 4 (𝜑 → (𝐼↑2) = ((√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)))↑2))
5234sqcld 14061 . . . . . . . 8 (𝜑 → (𝑆↑2) ∈ ℂ)
5352negcld 11469 . . . . . . 7 (𝜑 → -(𝑆↑2) ∈ ℂ)
5421halfcld 12376 . . . . . . 7 (𝜑 → (𝑃 / 2) ∈ ℂ)
5553, 54subcld 11482 . . . . . 6 (𝜑 → (-(𝑆↑2) − (𝑃 / 2)) ∈ ℂ)
5622, 12, 14divcld 11907 . . . . . . 7 (𝜑 → (𝑄 / 4) ∈ ℂ)
5749simp1d 1142 . . . . . . 7 (𝜑𝑆 ≠ 0)
5856, 34, 57divcld 11907 . . . . . 6 (𝜑 → ((𝑄 / 4) / 𝑆) ∈ ℂ)
5955, 58addcld 11141 . . . . 5 (𝜑 → ((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)) ∈ ℂ)
6059sqsqrtd 15359 . . . 4 (𝜑 → ((√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)))↑2) = ((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)))
6151, 60eqtrd 2768 . . 3 (𝜑 → (𝐼↑2) = ((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)))
6220simp3d 1144 . . 3 (𝜑𝑅 ∈ ℂ)
63 1cnd 11117 . . . . 5 (𝜑 → 1 ∈ ℂ)
64 3z 12515 . . . . . 6 3 ∈ ℤ
65 1exp 14008 . . . . . 6 (3 ∈ ℤ → (1↑3) = 1)
6664, 65mp1i 13 . . . . 5 (𝜑 → (1↑3) = 1)
6733simp3d 1144 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℂ)
6867mullidd 11140 . . . . . . . . . 10 (𝜑 → (1 · 𝑇) = 𝑇)
6968oveq2d 7371 . . . . . . . . 9 (𝜑 → ((2 · 𝑃) + (1 · 𝑇)) = ((2 · 𝑃) + 𝑇))
7068oveq2d 7371 . . . . . . . . 9 (𝜑 → (𝑈 / (1 · 𝑇)) = (𝑈 / 𝑇))
7169, 70oveq12d 7373 . . . . . . . 8 (𝜑 → (((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) = (((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)))
7271oveq1d 7370 . . . . . . 7 (𝜑 → ((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3) = ((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3))
7372negeqd 11364 . . . . . 6 (𝜑 → -((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3) = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3))
7430, 73eqtr4d 2771 . . . . 5 (𝜑𝑀 = -((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3))
75 oveq1 7362 . . . . . . . 8 (𝑥 = 1 → (𝑥↑3) = (1↑3))
7675eqeq1d 2735 . . . . . . 7 (𝑥 = 1 → ((𝑥↑3) = 1 ↔ (1↑3) = 1))
77 oveq1 7362 . . . . . . . . . . . 12 (𝑥 = 1 → (𝑥 · 𝑇) = (1 · 𝑇))
7877oveq2d 7371 . . . . . . . . . . 11 (𝑥 = 1 → ((2 · 𝑃) + (𝑥 · 𝑇)) = ((2 · 𝑃) + (1 · 𝑇)))
7977oveq2d 7371 . . . . . . . . . . 11 (𝑥 = 1 → (𝑈 / (𝑥 · 𝑇)) = (𝑈 / (1 · 𝑇)))
8078, 79oveq12d 7373 . . . . . . . . . 10 (𝑥 = 1 → (((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) = (((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))))
8180oveq1d 7370 . . . . . . . . 9 (𝑥 = 1 → ((((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) / 3) = ((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3))
8281negeqd 11364 . . . . . . . 8 (𝑥 = 1 → -((((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) / 3) = -((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3))
8382eqeq2d 2744 . . . . . . 7 (𝑥 = 1 → (𝑀 = -((((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) / 3) ↔ 𝑀 = -((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3)))
8476, 83anbi12d 632 . . . . . 6 (𝑥 = 1 → (((𝑥↑3) = 1 ∧ 𝑀 = -((((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) / 3)) ↔ ((1↑3) = 1 ∧ 𝑀 = -((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3))))
8584rspcev 3574 . . . . 5 ((1 ∈ ℂ ∧ ((1↑3) = 1 ∧ 𝑀 = -((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3))) → ∃𝑥 ∈ ℂ ((𝑥↑3) = 1 ∧ 𝑀 = -((((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) / 3)))
8663, 66, 74, 85syl12anc 836 . . . 4 (𝜑 → ∃𝑥 ∈ ℂ ((𝑥↑3) = 1 ∧ 𝑀 = -((((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) / 3)))
87 2cn 12210 . . . . . 6 2 ∈ ℂ
88 mulcl 11100 . . . . . 6 ((2 ∈ ℂ ∧ 𝑃 ∈ ℂ) → (2 · 𝑃) ∈ ℂ)
8987, 21, 88sylancr 587 . . . . 5 (𝜑 → (2 · 𝑃) ∈ ℂ)
9021sqcld 14061 . . . . . 6 (𝜑 → (𝑃↑2) ∈ ℂ)
91 mulcl 11100 . . . . . . 7 ((4 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (4 · 𝑅) ∈ ℂ)
9211, 62, 91sylancr 587 . . . . . 6 (𝜑 → (4 · 𝑅) ∈ ℂ)
9390, 92subcld 11482 . . . . 5 (𝜑 → ((𝑃↑2) − (4 · 𝑅)) ∈ ℂ)
9422sqcld 14061 . . . . . 6 (𝜑 → (𝑄↑2) ∈ ℂ)
9594negcld 11469 . . . . 5 (𝜑 → -(𝑄↑2) ∈ ℂ)
9631oveq1d 7370 . . . . . 6 (𝜑 → (𝑇↑3) = ((((𝑉 + 𝑊) / 2)↑𝑐(1 / 3))↑3))
971, 2, 3, 4, 1, 9, 5, 6, 7, 26, 27, 28quartlem2 26805 . . . . . . . . . 10 (𝜑 → (𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ ∧ 𝑊 ∈ ℂ))
9897simp2d 1143 . . . . . . . . 9 (𝜑𝑉 ∈ ℂ)
9997simp3d 1144 . . . . . . . . 9 (𝜑𝑊 ∈ ℂ)
10098, 99addcld 11141 . . . . . . . 8 (𝜑 → (𝑉 + 𝑊) ∈ ℂ)
101100halfcld 12376 . . . . . . 7 (𝜑 → ((𝑉 + 𝑊) / 2) ∈ ℂ)
102 3nn 12214 . . . . . . 7 3 ∈ ℕ
103 cxproot 26636 . . . . . . 7 ((((𝑉 + 𝑊) / 2) ∈ ℂ ∧ 3 ∈ ℕ) → ((((𝑉 + 𝑊) / 2)↑𝑐(1 / 3))↑3) = ((𝑉 + 𝑊) / 2))
104101, 102, 103sylancl 586 . . . . . 6 (𝜑 → ((((𝑉 + 𝑊) / 2)↑𝑐(1 / 3))↑3) = ((𝑉 + 𝑊) / 2))
10596, 104eqtrd 2768 . . . . 5 (𝜑 → (𝑇↑3) = ((𝑉 + 𝑊) / 2))
10628oveq1d 7370 . . . . . 6 (𝜑 → (𝑊↑2) = ((√‘((𝑉↑2) − (4 · (𝑈↑3))))↑2))
10798sqcld 14061 . . . . . . . 8 (𝜑 → (𝑉↑2) ∈ ℂ)
10897simp1d 1142 . . . . . . . . . 10 (𝜑𝑈 ∈ ℂ)
109 3nn0 12409 . . . . . . . . . 10 3 ∈ ℕ0
110 expcl 13996 . . . . . . . . . 10 ((𝑈 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑈↑3) ∈ ℂ)
111108, 109, 110sylancl 586 . . . . . . . . 9 (𝜑 → (𝑈↑3) ∈ ℂ)
112 mulcl 11100 . . . . . . . . 9 ((4 ∈ ℂ ∧ (𝑈↑3) ∈ ℂ) → (4 · (𝑈↑3)) ∈ ℂ)
11311, 111, 112sylancr 587 . . . . . . . 8 (𝜑 → (4 · (𝑈↑3)) ∈ ℂ)
114107, 113subcld 11482 . . . . . . 7 (𝜑 → ((𝑉↑2) − (4 · (𝑈↑3))) ∈ ℂ)
115114sqsqrtd 15359 . . . . . 6 (𝜑 → ((√‘((𝑉↑2) − (4 · (𝑈↑3))))↑2) = ((𝑉↑2) − (4 · (𝑈↑3))))
116106, 115eqtrd 2768 . . . . 5 (𝜑 → (𝑊↑2) = ((𝑉↑2) − (4 · (𝑈↑3))))
11721, 22, 62, 26, 27quartlem1 26804 . . . . . 6 (𝜑 → (𝑈 = (((2 · 𝑃)↑2) − (3 · ((𝑃↑2) − (4 · 𝑅)))) ∧ 𝑉 = (((2 · ((2 · 𝑃)↑3)) − (9 · ((2 · 𝑃) · ((𝑃↑2) − (4 · 𝑅))))) + (27 · -(𝑄↑2)))))
118117simpld 494 . . . . 5 (𝜑𝑈 = (((2 · 𝑃)↑2) − (3 · ((𝑃↑2) − (4 · 𝑅)))))
119117simprd 495 . . . . 5 (𝜑𝑉 = (((2 · ((2 · 𝑃)↑3)) − (9 · ((2 · 𝑃) · ((𝑃↑2) − (4 · 𝑅))))) + (27 · -(𝑄↑2))))
12089, 93, 95, 36, 67, 105, 99, 116, 118, 119, 32mcubic 26794 . . . 4 (𝜑 → ((((𝑀↑3) + ((2 · 𝑃) · (𝑀↑2))) + ((((𝑃↑2) − (4 · 𝑅)) · 𝑀) + -(𝑄↑2))) = 0 ↔ ∃𝑥 ∈ ℂ ((𝑥↑3) = 1 ∧ 𝑀 = -((((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) / 3))))
12186, 120mpbird 257 . . 3 (𝜑 → (((𝑀↑3) + ((2 · 𝑃) · (𝑀↑2))) + ((((𝑃↑2) − (4 · 𝑅)) · 𝑀) + -(𝑄↑2))) = 0)
12249simp3d 1144 . . 3 (𝜑𝐽 ∈ ℂ)
12348oveq1d 7370 . . . 4 (𝜑 → (𝐽↑2) = ((√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)))↑2))
12455, 58subcld 11482 . . . . 5 (𝜑 → ((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)) ∈ ℂ)
125124sqsqrtd 15359 . . . 4 (𝜑 → ((√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)))↑2) = ((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)))
126123, 125eqtrd 2768 . . 3 (𝜑 → (𝐽↑2) = ((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)))
12721, 22, 25, 34, 45, 46, 50, 61, 62, 121, 122, 126dquart 26800 . 2 (𝜑 → (((((𝑋𝐸)↑4) + (𝑃 · ((𝑋𝐸)↑2))) + ((𝑄 · (𝑋𝐸)) + 𝑅)) = 0 ↔ (((𝑋𝐸) = (-𝑆 + 𝐼) ∨ (𝑋𝐸) = (-𝑆𝐼)) ∨ ((𝑋𝐸) = (𝑆 + 𝐽) ∨ (𝑋𝐸) = (𝑆𝐽)))))
12834negcld 11469 . . . . . . . 8 (𝜑 → -𝑆 ∈ ℂ)
129128, 50addcld 11141 . . . . . . 7 (𝜑 → (-𝑆 + 𝐼) ∈ ℂ)
1308, 24, 129subaddd 11500 . . . . . 6 (𝜑 → ((𝑋𝐸) = (-𝑆 + 𝐼) ↔ (𝐸 + (-𝑆 + 𝐼)) = 𝑋))
13124, 34negsubd 11488 . . . . . . . . 9 (𝜑 → (𝐸 + -𝑆) = (𝐸𝑆))
132131oveq1d 7370 . . . . . . . 8 (𝜑 → ((𝐸 + -𝑆) + 𝐼) = ((𝐸𝑆) + 𝐼))
13324, 128, 50addassd 11144 . . . . . . . 8 (𝜑 → ((𝐸 + -𝑆) + 𝐼) = (𝐸 + (-𝑆 + 𝐼)))
134132, 133eqtr3d 2770 . . . . . . 7 (𝜑 → ((𝐸𝑆) + 𝐼) = (𝐸 + (-𝑆 + 𝐼)))
135134eqeq1d 2735 . . . . . 6 (𝜑 → (((𝐸𝑆) + 𝐼) = 𝑋 ↔ (𝐸 + (-𝑆 + 𝐼)) = 𝑋))
136130, 135bitr4d 282 . . . . 5 (𝜑 → ((𝑋𝐸) = (-𝑆 + 𝐼) ↔ ((𝐸𝑆) + 𝐼) = 𝑋))
137 eqcom 2740 . . . . 5 (((𝐸𝑆) + 𝐼) = 𝑋𝑋 = ((𝐸𝑆) + 𝐼))
138136, 137bitrdi 287 . . . 4 (𝜑 → ((𝑋𝐸) = (-𝑆 + 𝐼) ↔ 𝑋 = ((𝐸𝑆) + 𝐼)))
139128, 50subcld 11482 . . . . . . 7 (𝜑 → (-𝑆𝐼) ∈ ℂ)
1408, 24, 139subaddd 11500 . . . . . 6 (𝜑 → ((𝑋𝐸) = (-𝑆𝐼) ↔ (𝐸 + (-𝑆𝐼)) = 𝑋))
141131oveq1d 7370 . . . . . . . 8 (𝜑 → ((𝐸 + -𝑆) − 𝐼) = ((𝐸𝑆) − 𝐼))
14224, 128, 50addsubassd 11502 . . . . . . . 8 (𝜑 → ((𝐸 + -𝑆) − 𝐼) = (𝐸 + (-𝑆𝐼)))
143141, 142eqtr3d 2770 . . . . . . 7 (𝜑 → ((𝐸𝑆) − 𝐼) = (𝐸 + (-𝑆𝐼)))
144143eqeq1d 2735 . . . . . 6 (𝜑 → (((𝐸𝑆) − 𝐼) = 𝑋 ↔ (𝐸 + (-𝑆𝐼)) = 𝑋))
145140, 144bitr4d 282 . . . . 5 (𝜑 → ((𝑋𝐸) = (-𝑆𝐼) ↔ ((𝐸𝑆) − 𝐼) = 𝑋))
146 eqcom 2740 . . . . 5 (((𝐸𝑆) − 𝐼) = 𝑋𝑋 = ((𝐸𝑆) − 𝐼))
147145, 146bitrdi 287 . . . 4 (𝜑 → ((𝑋𝐸) = (-𝑆𝐼) ↔ 𝑋 = ((𝐸𝑆) − 𝐼)))
148138, 147orbi12d 918 . . 3 (𝜑 → (((𝑋𝐸) = (-𝑆 + 𝐼) ∨ (𝑋𝐸) = (-𝑆𝐼)) ↔ (𝑋 = ((𝐸𝑆) + 𝐼) ∨ 𝑋 = ((𝐸𝑆) − 𝐼))))
14934, 122addcld 11141 . . . . . . 7 (𝜑 → (𝑆 + 𝐽) ∈ ℂ)
1508, 24, 149subaddd 11500 . . . . . 6 (𝜑 → ((𝑋𝐸) = (𝑆 + 𝐽) ↔ (𝐸 + (𝑆 + 𝐽)) = 𝑋))
15124, 34, 122addassd 11144 . . . . . . 7 (𝜑 → ((𝐸 + 𝑆) + 𝐽) = (𝐸 + (𝑆 + 𝐽)))
152151eqeq1d 2735 . . . . . 6 (𝜑 → (((𝐸 + 𝑆) + 𝐽) = 𝑋 ↔ (𝐸 + (𝑆 + 𝐽)) = 𝑋))
153150, 152bitr4d 282 . . . . 5 (𝜑 → ((𝑋𝐸) = (𝑆 + 𝐽) ↔ ((𝐸 + 𝑆) + 𝐽) = 𝑋))
154 eqcom 2740 . . . . 5 (((𝐸 + 𝑆) + 𝐽) = 𝑋𝑋 = ((𝐸 + 𝑆) + 𝐽))
155153, 154bitrdi 287 . . . 4 (𝜑 → ((𝑋𝐸) = (𝑆 + 𝐽) ↔ 𝑋 = ((𝐸 + 𝑆) + 𝐽)))
15634, 122subcld 11482 . . . . . . 7 (𝜑 → (𝑆𝐽) ∈ ℂ)
1578, 24, 156subaddd 11500 . . . . . 6 (𝜑 → ((𝑋𝐸) = (𝑆𝐽) ↔ (𝐸 + (𝑆𝐽)) = 𝑋))
15824, 34, 122addsubassd 11502 . . . . . . 7 (𝜑 → ((𝐸 + 𝑆) − 𝐽) = (𝐸 + (𝑆𝐽)))
159158eqeq1d 2735 . . . . . 6 (𝜑 → (((𝐸 + 𝑆) − 𝐽) = 𝑋 ↔ (𝐸 + (𝑆𝐽)) = 𝑋))
160157, 159bitr4d 282 . . . . 5 (𝜑 → ((𝑋𝐸) = (𝑆𝐽) ↔ ((𝐸 + 𝑆) − 𝐽) = 𝑋))
161 eqcom 2740 . . . . 5 (((𝐸 + 𝑆) − 𝐽) = 𝑋𝑋 = ((𝐸 + 𝑆) − 𝐽))
162160, 161bitrdi 287 . . . 4 (𝜑 → ((𝑋𝐸) = (𝑆𝐽) ↔ 𝑋 = ((𝐸 + 𝑆) − 𝐽)))
163155, 162orbi12d 918 . . 3 (𝜑 → (((𝑋𝐸) = (𝑆 + 𝐽) ∨ (𝑋𝐸) = (𝑆𝐽)) ↔ (𝑋 = ((𝐸 + 𝑆) + 𝐽) ∨ 𝑋 = ((𝐸 + 𝑆) − 𝐽))))
164148, 163orbi12d 918 . 2 (𝜑 → ((((𝑋𝐸) = (-𝑆 + 𝐼) ∨ (𝑋𝐸) = (-𝑆𝐼)) ∨ ((𝑋𝐸) = (𝑆 + 𝐽) ∨ (𝑋𝐸) = (𝑆𝐽))) ↔ ((𝑋 = ((𝐸𝑆) + 𝐼) ∨ 𝑋 = ((𝐸𝑆) − 𝐼)) ∨ (𝑋 = ((𝐸 + 𝑆) + 𝐽) ∨ 𝑋 = ((𝐸 + 𝑆) − 𝐽)))))
16519, 127, 1643bitrd 305 1 (𝜑 → ((((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((𝐵 · (𝑋↑2)) + ((𝐶 · 𝑋) + 𝐷))) = 0 ↔ ((𝑋 = ((𝐸𝑆) + 𝐼) ∨ 𝑋 = ((𝐸𝑆) − 𝐼)) ∨ (𝑋 = ((𝐸 + 𝑆) + 𝐽) ∨ 𝑋 = ((𝐸 + 𝑆) − 𝐽)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113  wne 2930  wrex 3058  cfv 6489  (class class class)co 7355  cc 11014  0cc0 11016  1c1 11017   + caddc 11019   · cmul 11021  cmin 11354  -cneg 11355   / cdiv 11784  cn 12135  2c2 12190  3c3 12191  4c4 12192  5c5 12193  6c6 12194  7c7 12195  8c8 12196  9c9 12197  0cn0 12391  cz 12478  cdc 12598  cexp 13978  csqrt 15150  𝑐ccxp 26501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9541  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094  ax-addf 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8831  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-fsupp 9256  df-fi 9305  df-sup 9336  df-inf 9337  df-oi 9406  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-z 12479  df-dec 12599  df-uz 12743  df-q 12857  df-rp 12901  df-xneg 13021  df-xadd 13022  df-xmul 13023  df-ioo 13259  df-ioc 13260  df-ico 13261  df-icc 13262  df-fz 13418  df-fzo 13565  df-fl 13706  df-mod 13784  df-seq 13919  df-exp 13979  df-fac 14191  df-bc 14220  df-hash 14248  df-shft 14984  df-cj 15016  df-re 15017  df-im 15018  df-sqrt 15152  df-abs 15153  df-limsup 15388  df-clim 15405  df-rlim 15406  df-sum 15604  df-ef 15984  df-sin 15986  df-cos 15987  df-pi 15989  df-dvds 16174  df-struct 17068  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-mulr 17185  df-starv 17186  df-sca 17187  df-vsca 17188  df-ip 17189  df-tset 17190  df-ple 17191  df-ds 17193  df-unif 17194  df-hom 17195  df-cco 17196  df-rest 17336  df-topn 17337  df-0g 17355  df-gsum 17356  df-topgen 17357  df-pt 17358  df-prds 17361  df-xrs 17416  df-qtop 17421  df-imas 17422  df-xps 17424  df-mre 17498  df-mrc 17499  df-acs 17501  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-submnd 18702  df-mulg 18991  df-cntz 19239  df-cmn 19704  df-psmet 21293  df-xmet 21294  df-met 21295  df-bl 21296  df-mopn 21297  df-fbas 21298  df-fg 21299  df-cnfld 21302  df-top 22819  df-topon 22836  df-topsp 22858  df-bases 22871  df-cld 22944  df-ntr 22945  df-cls 22946  df-nei 23023  df-lp 23061  df-perf 23062  df-cn 23152  df-cnp 23153  df-haus 23240  df-tx 23487  df-hmeo 23680  df-fil 23771  df-fm 23863  df-flim 23864  df-flf 23865  df-xms 24245  df-ms 24246  df-tms 24247  df-cncf 24808  df-limc 25804  df-dv 25805  df-log 26502  df-cxp 26503
This theorem is referenced by:  quartfull  35220
  Copyright terms: Public domain W3C validator