MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quart Structured version   Visualization version   GIF version

Theorem quart 26771
Description: The quartic equation, writing out all roots using square and cube root functions so that only direct substitutions remain, and we can actually claim to have a "quartic equation". Naturally, this theorem is ridiculously long (see quartfull 35152) if all the substitutions are performed. This is Metamath 100 proof #46. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
quart.a (𝜑𝐴 ∈ ℂ)
quart.b (𝜑𝐵 ∈ ℂ)
quart.c (𝜑𝐶 ∈ ℂ)
quart.d (𝜑𝐷 ∈ ℂ)
quart.x (𝜑𝑋 ∈ ℂ)
quart.e (𝜑𝐸 = -(𝐴 / 4))
quart.p (𝜑𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2))))
quart.q (𝜑𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)))
quart.r (𝜑𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))))
quart.u (𝜑𝑈 = ((𝑃↑2) + (12 · 𝑅)))
quart.v (𝜑𝑉 = ((-(2 · (𝑃↑3)) − (27 · (𝑄↑2))) + (72 · (𝑃 · 𝑅))))
quart.w (𝜑𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3)))))
quart.s (𝜑𝑆 = ((√‘𝑀) / 2))
quart.m (𝜑𝑀 = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3))
quart.t (𝜑𝑇 = (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3)))
quart.t0 (𝜑𝑇 ≠ 0)
quart.m0 (𝜑𝑀 ≠ 0)
quart.i (𝜑𝐼 = (√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆))))
quart.j (𝜑𝐽 = (√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆))))
Assertion
Ref Expression
quart (𝜑 → ((((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((𝐵 · (𝑋↑2)) + ((𝐶 · 𝑋) + 𝐷))) = 0 ↔ ((𝑋 = ((𝐸𝑆) + 𝐼) ∨ 𝑋 = ((𝐸𝑆) − 𝐼)) ∨ (𝑋 = ((𝐸 + 𝑆) + 𝐽) ∨ 𝑋 = ((𝐸 + 𝑆) − 𝐽)))))

Proof of Theorem quart
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 quart.a . . . 4 (𝜑𝐴 ∈ ℂ)
2 quart.b . . . 4 (𝜑𝐵 ∈ ℂ)
3 quart.c . . . 4 (𝜑𝐶 ∈ ℂ)
4 quart.d . . . 4 (𝜑𝐷 ∈ ℂ)
5 quart.p . . . 4 (𝜑𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2))))
6 quart.q . . . 4 (𝜑𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)))
7 quart.r . . . 4 (𝜑𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))))
8 quart.x . . . 4 (𝜑𝑋 ∈ ℂ)
9 quart.e . . . . . 6 (𝜑𝐸 = -(𝐴 / 4))
109oveq2d 7403 . . . . 5 (𝜑 → (𝑋𝐸) = (𝑋 − -(𝐴 / 4)))
11 4cn 12271 . . . . . . . 8 4 ∈ ℂ
1211a1i 11 . . . . . . 7 (𝜑 → 4 ∈ ℂ)
13 4ne0 12294 . . . . . . . 8 4 ≠ 0
1413a1i 11 . . . . . . 7 (𝜑 → 4 ≠ 0)
151, 12, 14divcld 11958 . . . . . 6 (𝜑 → (𝐴 / 4) ∈ ℂ)
168, 15subnegd 11540 . . . . 5 (𝜑 → (𝑋 − -(𝐴 / 4)) = (𝑋 + (𝐴 / 4)))
1710, 16eqtrd 2764 . . . 4 (𝜑 → (𝑋𝐸) = (𝑋 + (𝐴 / 4)))
181, 2, 3, 4, 5, 6, 7, 8, 17quart1 26766 . . 3 (𝜑 → (((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((𝐵 · (𝑋↑2)) + ((𝐶 · 𝑋) + 𝐷))) = ((((𝑋𝐸)↑4) + (𝑃 · ((𝑋𝐸)↑2))) + ((𝑄 · (𝑋𝐸)) + 𝑅)))
1918eqeq1d 2731 . 2 (𝜑 → ((((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((𝐵 · (𝑋↑2)) + ((𝐶 · 𝑋) + 𝐷))) = 0 ↔ ((((𝑋𝐸)↑4) + (𝑃 · ((𝑋𝐸)↑2))) + ((𝑄 · (𝑋𝐸)) + 𝑅)) = 0))
201, 2, 3, 4, 5, 6, 7quart1cl 26764 . . . 4 (𝜑 → (𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ))
2120simp1d 1142 . . 3 (𝜑𝑃 ∈ ℂ)
2220simp2d 1143 . . 3 (𝜑𝑄 ∈ ℂ)
2315negcld 11520 . . . . 5 (𝜑 → -(𝐴 / 4) ∈ ℂ)
249, 23eqeltrd 2828 . . . 4 (𝜑𝐸 ∈ ℂ)
258, 24subcld 11533 . . 3 (𝜑 → (𝑋𝐸) ∈ ℂ)
26 quart.u . . . . 5 (𝜑𝑈 = ((𝑃↑2) + (12 · 𝑅)))
27 quart.v . . . . 5 (𝜑𝑉 = ((-(2 · (𝑃↑3)) − (27 · (𝑄↑2))) + (72 · (𝑃 · 𝑅))))
28 quart.w . . . . 5 (𝜑𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3)))))
29 quart.s . . . . 5 (𝜑𝑆 = ((√‘𝑀) / 2))
30 quart.m . . . . 5 (𝜑𝑀 = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3))
31 quart.t . . . . 5 (𝜑𝑇 = (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3)))
32 quart.t0 . . . . 5 (𝜑𝑇 ≠ 0)
331, 2, 3, 4, 1, 9, 5, 6, 7, 26, 27, 28, 29, 30, 31, 32quartlem3 26769 . . . 4 (𝜑 → (𝑆 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑇 ∈ ℂ))
3433simp1d 1142 . . 3 (𝜑𝑆 ∈ ℂ)
3529oveq2d 7403 . . . . . 6 (𝜑 → (2 · 𝑆) = (2 · ((√‘𝑀) / 2)))
3633simp2d 1143 . . . . . . . 8 (𝜑𝑀 ∈ ℂ)
3736sqrtcld 15406 . . . . . . 7 (𝜑 → (√‘𝑀) ∈ ℂ)
38 2cnd 12264 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
39 2ne0 12290 . . . . . . . 8 2 ≠ 0
4039a1i 11 . . . . . . 7 (𝜑 → 2 ≠ 0)
4137, 38, 40divcan2d 11960 . . . . . 6 (𝜑 → (2 · ((√‘𝑀) / 2)) = (√‘𝑀))
4235, 41eqtrd 2764 . . . . 5 (𝜑 → (2 · 𝑆) = (√‘𝑀))
4342oveq1d 7402 . . . 4 (𝜑 → ((2 · 𝑆)↑2) = ((√‘𝑀)↑2))
4436sqsqrtd 15408 . . . 4 (𝜑 → ((√‘𝑀)↑2) = 𝑀)
4543, 44eqtr2d 2765 . . 3 (𝜑𝑀 = ((2 · 𝑆)↑2))
46 quart.m0 . . 3 (𝜑𝑀 ≠ 0)
47 quart.i . . . . 5 (𝜑𝐼 = (√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆))))
48 quart.j . . . . 5 (𝜑𝐽 = (√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆))))
491, 2, 3, 4, 1, 9, 5, 6, 7, 26, 27, 28, 29, 30, 31, 32, 46, 47, 48quartlem4 26770 . . . 4 (𝜑 → (𝑆 ≠ 0 ∧ 𝐼 ∈ ℂ ∧ 𝐽 ∈ ℂ))
5049simp2d 1143 . . 3 (𝜑𝐼 ∈ ℂ)
5147oveq1d 7402 . . . 4 (𝜑 → (𝐼↑2) = ((√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)))↑2))
5234sqcld 14109 . . . . . . . 8 (𝜑 → (𝑆↑2) ∈ ℂ)
5352negcld 11520 . . . . . . 7 (𝜑 → -(𝑆↑2) ∈ ℂ)
5421halfcld 12427 . . . . . . 7 (𝜑 → (𝑃 / 2) ∈ ℂ)
5553, 54subcld 11533 . . . . . 6 (𝜑 → (-(𝑆↑2) − (𝑃 / 2)) ∈ ℂ)
5622, 12, 14divcld 11958 . . . . . . 7 (𝜑 → (𝑄 / 4) ∈ ℂ)
5749simp1d 1142 . . . . . . 7 (𝜑𝑆 ≠ 0)
5856, 34, 57divcld 11958 . . . . . 6 (𝜑 → ((𝑄 / 4) / 𝑆) ∈ ℂ)
5955, 58addcld 11193 . . . . 5 (𝜑 → ((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)) ∈ ℂ)
6059sqsqrtd 15408 . . . 4 (𝜑 → ((√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)))↑2) = ((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)))
6151, 60eqtrd 2764 . . 3 (𝜑 → (𝐼↑2) = ((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)))
6220simp3d 1144 . . 3 (𝜑𝑅 ∈ ℂ)
63 1cnd 11169 . . . . 5 (𝜑 → 1 ∈ ℂ)
64 3z 12566 . . . . . 6 3 ∈ ℤ
65 1exp 14056 . . . . . 6 (3 ∈ ℤ → (1↑3) = 1)
6664, 65mp1i 13 . . . . 5 (𝜑 → (1↑3) = 1)
6733simp3d 1144 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℂ)
6867mullidd 11192 . . . . . . . . . 10 (𝜑 → (1 · 𝑇) = 𝑇)
6968oveq2d 7403 . . . . . . . . 9 (𝜑 → ((2 · 𝑃) + (1 · 𝑇)) = ((2 · 𝑃) + 𝑇))
7068oveq2d 7403 . . . . . . . . 9 (𝜑 → (𝑈 / (1 · 𝑇)) = (𝑈 / 𝑇))
7169, 70oveq12d 7405 . . . . . . . 8 (𝜑 → (((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) = (((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)))
7271oveq1d 7402 . . . . . . 7 (𝜑 → ((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3) = ((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3))
7372negeqd 11415 . . . . . 6 (𝜑 → -((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3) = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3))
7430, 73eqtr4d 2767 . . . . 5 (𝜑𝑀 = -((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3))
75 oveq1 7394 . . . . . . . 8 (𝑥 = 1 → (𝑥↑3) = (1↑3))
7675eqeq1d 2731 . . . . . . 7 (𝑥 = 1 → ((𝑥↑3) = 1 ↔ (1↑3) = 1))
77 oveq1 7394 . . . . . . . . . . . 12 (𝑥 = 1 → (𝑥 · 𝑇) = (1 · 𝑇))
7877oveq2d 7403 . . . . . . . . . . 11 (𝑥 = 1 → ((2 · 𝑃) + (𝑥 · 𝑇)) = ((2 · 𝑃) + (1 · 𝑇)))
7977oveq2d 7403 . . . . . . . . . . 11 (𝑥 = 1 → (𝑈 / (𝑥 · 𝑇)) = (𝑈 / (1 · 𝑇)))
8078, 79oveq12d 7405 . . . . . . . . . 10 (𝑥 = 1 → (((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) = (((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))))
8180oveq1d 7402 . . . . . . . . 9 (𝑥 = 1 → ((((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) / 3) = ((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3))
8281negeqd 11415 . . . . . . . 8 (𝑥 = 1 → -((((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) / 3) = -((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3))
8382eqeq2d 2740 . . . . . . 7 (𝑥 = 1 → (𝑀 = -((((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) / 3) ↔ 𝑀 = -((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3)))
8476, 83anbi12d 632 . . . . . 6 (𝑥 = 1 → (((𝑥↑3) = 1 ∧ 𝑀 = -((((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) / 3)) ↔ ((1↑3) = 1 ∧ 𝑀 = -((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3))))
8584rspcev 3588 . . . . 5 ((1 ∈ ℂ ∧ ((1↑3) = 1 ∧ 𝑀 = -((((2 · 𝑃) + (1 · 𝑇)) + (𝑈 / (1 · 𝑇))) / 3))) → ∃𝑥 ∈ ℂ ((𝑥↑3) = 1 ∧ 𝑀 = -((((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) / 3)))
8663, 66, 74, 85syl12anc 836 . . . 4 (𝜑 → ∃𝑥 ∈ ℂ ((𝑥↑3) = 1 ∧ 𝑀 = -((((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) / 3)))
87 2cn 12261 . . . . . 6 2 ∈ ℂ
88 mulcl 11152 . . . . . 6 ((2 ∈ ℂ ∧ 𝑃 ∈ ℂ) → (2 · 𝑃) ∈ ℂ)
8987, 21, 88sylancr 587 . . . . 5 (𝜑 → (2 · 𝑃) ∈ ℂ)
9021sqcld 14109 . . . . . 6 (𝜑 → (𝑃↑2) ∈ ℂ)
91 mulcl 11152 . . . . . . 7 ((4 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (4 · 𝑅) ∈ ℂ)
9211, 62, 91sylancr 587 . . . . . 6 (𝜑 → (4 · 𝑅) ∈ ℂ)
9390, 92subcld 11533 . . . . 5 (𝜑 → ((𝑃↑2) − (4 · 𝑅)) ∈ ℂ)
9422sqcld 14109 . . . . . 6 (𝜑 → (𝑄↑2) ∈ ℂ)
9594negcld 11520 . . . . 5 (𝜑 → -(𝑄↑2) ∈ ℂ)
9631oveq1d 7402 . . . . . 6 (𝜑 → (𝑇↑3) = ((((𝑉 + 𝑊) / 2)↑𝑐(1 / 3))↑3))
971, 2, 3, 4, 1, 9, 5, 6, 7, 26, 27, 28quartlem2 26768 . . . . . . . . . 10 (𝜑 → (𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ ∧ 𝑊 ∈ ℂ))
9897simp2d 1143 . . . . . . . . 9 (𝜑𝑉 ∈ ℂ)
9997simp3d 1144 . . . . . . . . 9 (𝜑𝑊 ∈ ℂ)
10098, 99addcld 11193 . . . . . . . 8 (𝜑 → (𝑉 + 𝑊) ∈ ℂ)
101100halfcld 12427 . . . . . . 7 (𝜑 → ((𝑉 + 𝑊) / 2) ∈ ℂ)
102 3nn 12265 . . . . . . 7 3 ∈ ℕ
103 cxproot 26599 . . . . . . 7 ((((𝑉 + 𝑊) / 2) ∈ ℂ ∧ 3 ∈ ℕ) → ((((𝑉 + 𝑊) / 2)↑𝑐(1 / 3))↑3) = ((𝑉 + 𝑊) / 2))
104101, 102, 103sylancl 586 . . . . . 6 (𝜑 → ((((𝑉 + 𝑊) / 2)↑𝑐(1 / 3))↑3) = ((𝑉 + 𝑊) / 2))
10596, 104eqtrd 2764 . . . . 5 (𝜑 → (𝑇↑3) = ((𝑉 + 𝑊) / 2))
10628oveq1d 7402 . . . . . 6 (𝜑 → (𝑊↑2) = ((√‘((𝑉↑2) − (4 · (𝑈↑3))))↑2))
10798sqcld 14109 . . . . . . . 8 (𝜑 → (𝑉↑2) ∈ ℂ)
10897simp1d 1142 . . . . . . . . . 10 (𝜑𝑈 ∈ ℂ)
109 3nn0 12460 . . . . . . . . . 10 3 ∈ ℕ0
110 expcl 14044 . . . . . . . . . 10 ((𝑈 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑈↑3) ∈ ℂ)
111108, 109, 110sylancl 586 . . . . . . . . 9 (𝜑 → (𝑈↑3) ∈ ℂ)
112 mulcl 11152 . . . . . . . . 9 ((4 ∈ ℂ ∧ (𝑈↑3) ∈ ℂ) → (4 · (𝑈↑3)) ∈ ℂ)
11311, 111, 112sylancr 587 . . . . . . . 8 (𝜑 → (4 · (𝑈↑3)) ∈ ℂ)
114107, 113subcld 11533 . . . . . . 7 (𝜑 → ((𝑉↑2) − (4 · (𝑈↑3))) ∈ ℂ)
115114sqsqrtd 15408 . . . . . 6 (𝜑 → ((√‘((𝑉↑2) − (4 · (𝑈↑3))))↑2) = ((𝑉↑2) − (4 · (𝑈↑3))))
116106, 115eqtrd 2764 . . . . 5 (𝜑 → (𝑊↑2) = ((𝑉↑2) − (4 · (𝑈↑3))))
11721, 22, 62, 26, 27quartlem1 26767 . . . . . 6 (𝜑 → (𝑈 = (((2 · 𝑃)↑2) − (3 · ((𝑃↑2) − (4 · 𝑅)))) ∧ 𝑉 = (((2 · ((2 · 𝑃)↑3)) − (9 · ((2 · 𝑃) · ((𝑃↑2) − (4 · 𝑅))))) + (27 · -(𝑄↑2)))))
118117simpld 494 . . . . 5 (𝜑𝑈 = (((2 · 𝑃)↑2) − (3 · ((𝑃↑2) − (4 · 𝑅)))))
119117simprd 495 . . . . 5 (𝜑𝑉 = (((2 · ((2 · 𝑃)↑3)) − (9 · ((2 · 𝑃) · ((𝑃↑2) − (4 · 𝑅))))) + (27 · -(𝑄↑2))))
12089, 93, 95, 36, 67, 105, 99, 116, 118, 119, 32mcubic 26757 . . . 4 (𝜑 → ((((𝑀↑3) + ((2 · 𝑃) · (𝑀↑2))) + ((((𝑃↑2) − (4 · 𝑅)) · 𝑀) + -(𝑄↑2))) = 0 ↔ ∃𝑥 ∈ ℂ ((𝑥↑3) = 1 ∧ 𝑀 = -((((2 · 𝑃) + (𝑥 · 𝑇)) + (𝑈 / (𝑥 · 𝑇))) / 3))))
12186, 120mpbird 257 . . 3 (𝜑 → (((𝑀↑3) + ((2 · 𝑃) · (𝑀↑2))) + ((((𝑃↑2) − (4 · 𝑅)) · 𝑀) + -(𝑄↑2))) = 0)
12249simp3d 1144 . . 3 (𝜑𝐽 ∈ ℂ)
12348oveq1d 7402 . . . 4 (𝜑 → (𝐽↑2) = ((√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)))↑2))
12455, 58subcld 11533 . . . . 5 (𝜑 → ((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)) ∈ ℂ)
125124sqsqrtd 15408 . . . 4 (𝜑 → ((√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)))↑2) = ((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)))
126123, 125eqtrd 2764 . . 3 (𝜑 → (𝐽↑2) = ((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)))
12721, 22, 25, 34, 45, 46, 50, 61, 62, 121, 122, 126dquart 26763 . 2 (𝜑 → (((((𝑋𝐸)↑4) + (𝑃 · ((𝑋𝐸)↑2))) + ((𝑄 · (𝑋𝐸)) + 𝑅)) = 0 ↔ (((𝑋𝐸) = (-𝑆 + 𝐼) ∨ (𝑋𝐸) = (-𝑆𝐼)) ∨ ((𝑋𝐸) = (𝑆 + 𝐽) ∨ (𝑋𝐸) = (𝑆𝐽)))))
12834negcld 11520 . . . . . . . 8 (𝜑 → -𝑆 ∈ ℂ)
129128, 50addcld 11193 . . . . . . 7 (𝜑 → (-𝑆 + 𝐼) ∈ ℂ)
1308, 24, 129subaddd 11551 . . . . . 6 (𝜑 → ((𝑋𝐸) = (-𝑆 + 𝐼) ↔ (𝐸 + (-𝑆 + 𝐼)) = 𝑋))
13124, 34negsubd 11539 . . . . . . . . 9 (𝜑 → (𝐸 + -𝑆) = (𝐸𝑆))
132131oveq1d 7402 . . . . . . . 8 (𝜑 → ((𝐸 + -𝑆) + 𝐼) = ((𝐸𝑆) + 𝐼))
13324, 128, 50addassd 11196 . . . . . . . 8 (𝜑 → ((𝐸 + -𝑆) + 𝐼) = (𝐸 + (-𝑆 + 𝐼)))
134132, 133eqtr3d 2766 . . . . . . 7 (𝜑 → ((𝐸𝑆) + 𝐼) = (𝐸 + (-𝑆 + 𝐼)))
135134eqeq1d 2731 . . . . . 6 (𝜑 → (((𝐸𝑆) + 𝐼) = 𝑋 ↔ (𝐸 + (-𝑆 + 𝐼)) = 𝑋))
136130, 135bitr4d 282 . . . . 5 (𝜑 → ((𝑋𝐸) = (-𝑆 + 𝐼) ↔ ((𝐸𝑆) + 𝐼) = 𝑋))
137 eqcom 2736 . . . . 5 (((𝐸𝑆) + 𝐼) = 𝑋𝑋 = ((𝐸𝑆) + 𝐼))
138136, 137bitrdi 287 . . . 4 (𝜑 → ((𝑋𝐸) = (-𝑆 + 𝐼) ↔ 𝑋 = ((𝐸𝑆) + 𝐼)))
139128, 50subcld 11533 . . . . . . 7 (𝜑 → (-𝑆𝐼) ∈ ℂ)
1408, 24, 139subaddd 11551 . . . . . 6 (𝜑 → ((𝑋𝐸) = (-𝑆𝐼) ↔ (𝐸 + (-𝑆𝐼)) = 𝑋))
141131oveq1d 7402 . . . . . . . 8 (𝜑 → ((𝐸 + -𝑆) − 𝐼) = ((𝐸𝑆) − 𝐼))
14224, 128, 50addsubassd 11553 . . . . . . . 8 (𝜑 → ((𝐸 + -𝑆) − 𝐼) = (𝐸 + (-𝑆𝐼)))
143141, 142eqtr3d 2766 . . . . . . 7 (𝜑 → ((𝐸𝑆) − 𝐼) = (𝐸 + (-𝑆𝐼)))
144143eqeq1d 2731 . . . . . 6 (𝜑 → (((𝐸𝑆) − 𝐼) = 𝑋 ↔ (𝐸 + (-𝑆𝐼)) = 𝑋))
145140, 144bitr4d 282 . . . . 5 (𝜑 → ((𝑋𝐸) = (-𝑆𝐼) ↔ ((𝐸𝑆) − 𝐼) = 𝑋))
146 eqcom 2736 . . . . 5 (((𝐸𝑆) − 𝐼) = 𝑋𝑋 = ((𝐸𝑆) − 𝐼))
147145, 146bitrdi 287 . . . 4 (𝜑 → ((𝑋𝐸) = (-𝑆𝐼) ↔ 𝑋 = ((𝐸𝑆) − 𝐼)))
148138, 147orbi12d 918 . . 3 (𝜑 → (((𝑋𝐸) = (-𝑆 + 𝐼) ∨ (𝑋𝐸) = (-𝑆𝐼)) ↔ (𝑋 = ((𝐸𝑆) + 𝐼) ∨ 𝑋 = ((𝐸𝑆) − 𝐼))))
14934, 122addcld 11193 . . . . . . 7 (𝜑 → (𝑆 + 𝐽) ∈ ℂ)
1508, 24, 149subaddd 11551 . . . . . 6 (𝜑 → ((𝑋𝐸) = (𝑆 + 𝐽) ↔ (𝐸 + (𝑆 + 𝐽)) = 𝑋))
15124, 34, 122addassd 11196 . . . . . . 7 (𝜑 → ((𝐸 + 𝑆) + 𝐽) = (𝐸 + (𝑆 + 𝐽)))
152151eqeq1d 2731 . . . . . 6 (𝜑 → (((𝐸 + 𝑆) + 𝐽) = 𝑋 ↔ (𝐸 + (𝑆 + 𝐽)) = 𝑋))
153150, 152bitr4d 282 . . . . 5 (𝜑 → ((𝑋𝐸) = (𝑆 + 𝐽) ↔ ((𝐸 + 𝑆) + 𝐽) = 𝑋))
154 eqcom 2736 . . . . 5 (((𝐸 + 𝑆) + 𝐽) = 𝑋𝑋 = ((𝐸 + 𝑆) + 𝐽))
155153, 154bitrdi 287 . . . 4 (𝜑 → ((𝑋𝐸) = (𝑆 + 𝐽) ↔ 𝑋 = ((𝐸 + 𝑆) + 𝐽)))
15634, 122subcld 11533 . . . . . . 7 (𝜑 → (𝑆𝐽) ∈ ℂ)
1578, 24, 156subaddd 11551 . . . . . 6 (𝜑 → ((𝑋𝐸) = (𝑆𝐽) ↔ (𝐸 + (𝑆𝐽)) = 𝑋))
15824, 34, 122addsubassd 11553 . . . . . . 7 (𝜑 → ((𝐸 + 𝑆) − 𝐽) = (𝐸 + (𝑆𝐽)))
159158eqeq1d 2731 . . . . . 6 (𝜑 → (((𝐸 + 𝑆) − 𝐽) = 𝑋 ↔ (𝐸 + (𝑆𝐽)) = 𝑋))
160157, 159bitr4d 282 . . . . 5 (𝜑 → ((𝑋𝐸) = (𝑆𝐽) ↔ ((𝐸 + 𝑆) − 𝐽) = 𝑋))
161 eqcom 2736 . . . . 5 (((𝐸 + 𝑆) − 𝐽) = 𝑋𝑋 = ((𝐸 + 𝑆) − 𝐽))
162160, 161bitrdi 287 . . . 4 (𝜑 → ((𝑋𝐸) = (𝑆𝐽) ↔ 𝑋 = ((𝐸 + 𝑆) − 𝐽)))
163155, 162orbi12d 918 . . 3 (𝜑 → (((𝑋𝐸) = (𝑆 + 𝐽) ∨ (𝑋𝐸) = (𝑆𝐽)) ↔ (𝑋 = ((𝐸 + 𝑆) + 𝐽) ∨ 𝑋 = ((𝐸 + 𝑆) − 𝐽))))
164148, 163orbi12d 918 . 2 (𝜑 → ((((𝑋𝐸) = (-𝑆 + 𝐼) ∨ (𝑋𝐸) = (-𝑆𝐼)) ∨ ((𝑋𝐸) = (𝑆 + 𝐽) ∨ (𝑋𝐸) = (𝑆𝐽))) ↔ ((𝑋 = ((𝐸𝑆) + 𝐼) ∨ 𝑋 = ((𝐸𝑆) − 𝐼)) ∨ (𝑋 = ((𝐸 + 𝑆) + 𝐽) ∨ 𝑋 = ((𝐸 + 𝑆) − 𝐽)))))
16519, 127, 1643bitrd 305 1 (𝜑 → ((((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((𝐵 · (𝑋↑2)) + ((𝐶 · 𝑋) + 𝐷))) = 0 ↔ ((𝑋 = ((𝐸𝑆) + 𝐼) ∨ 𝑋 = ((𝐸𝑆) − 𝐼)) ∨ (𝑋 = ((𝐸 + 𝑆) + 𝐽) ∨ 𝑋 = ((𝐸 + 𝑆) − 𝐽)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wrex 3053  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  cmin 11405  -cneg 11406   / cdiv 11835  cn 12186  2c2 12241  3c3 12242  4c4 12243  5c5 12244  6c6 12245  7c7 12246  8c8 12247  9c9 12248  0cn0 12442  cz 12529  cdc 12649  cexp 14026  csqrt 15199  𝑐ccxp 26464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-dvds 16223  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-cxp 26466
This theorem is referenced by:  quartfull  35152
  Copyright terms: Public domain W3C validator