MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcollpw Structured version   Visualization version   GIF version

Theorem pmatcollpw 21386
Description: Write a polynomial matrix (over a commutative ring) as a sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 26-Oct-2019.) (Revised by AV, 4-Dec-2019.)
Hypotheses
Ref Expression
pmatcollpw.p 𝑃 = (Poly1𝑅)
pmatcollpw.c 𝐶 = (𝑁 Mat 𝑃)
pmatcollpw.b 𝐵 = (Base‘𝐶)
pmatcollpw.m = ( ·𝑠𝐶)
pmatcollpw.e = (.g‘(mulGrp‘𝑃))
pmatcollpw.x 𝑋 = (var1𝑅)
pmatcollpw.t 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
pmatcollpw ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀 = (𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛   𝑅,𝑛   𝑛,𝑋   ,𝑛
Allowed substitution hints:   𝐶(𝑛)   𝑇(𝑛)   (𝑛)

Proof of Theorem pmatcollpw
Dummy variables 𝑖 𝑗 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 19302 . . 3 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 pmatcollpw.p . . . 4 𝑃 = (Poly1𝑅)
3 pmatcollpw.c . . . 4 𝐶 = (𝑁 Mat 𝑃)
4 pmatcollpw.b . . . 4 𝐵 = (Base‘𝐶)
5 eqid 2798 . . . 4 ( ·𝑠𝑃) = ( ·𝑠𝑃)
6 pmatcollpw.e . . . 4 = (.g‘(mulGrp‘𝑃))
7 pmatcollpw.x . . . 4 𝑋 = (var1𝑅)
82, 3, 4, 5, 6, 7pmatcollpw2 21383 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑀 = (𝐶 Σg (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠𝑃)(𝑛 𝑋))))))
91, 8syl3an2 1161 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀 = (𝐶 Σg (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠𝑃)(𝑛 𝑋))))))
10 eqidd 2799 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠𝑃)(𝑛 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠𝑃)(𝑛 𝑋))))
11 oveq12 7144 . . . . . . . . . 10 ((𝑖 = 𝑎𝑗 = 𝑏) → (𝑖(𝑀 decompPMat 𝑛)𝑗) = (𝑎(𝑀 decompPMat 𝑛)𝑏))
1211oveq1d 7150 . . . . . . . . 9 ((𝑖 = 𝑎𝑗 = 𝑏) → ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠𝑃)(𝑛 𝑋)) = ((𝑎(𝑀 decompPMat 𝑛)𝑏)( ·𝑠𝑃)(𝑛 𝑋)))
1312adantl 485 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) ∧ (𝑖 = 𝑎𝑗 = 𝑏)) → ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠𝑃)(𝑛 𝑋)) = ((𝑎(𝑀 decompPMat 𝑛)𝑏)( ·𝑠𝑃)(𝑛 𝑋)))
14 simprl 770 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → 𝑎𝑁)
15 simpr 488 . . . . . . . . 9 ((𝑎𝑁𝑏𝑁) → 𝑏𝑁)
1615adantl 485 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → 𝑏𝑁)
17 simp2 1134 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ CRing)
1817adantr 484 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ CRing)
1918, 1syl 17 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring)
2019adantr 484 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → 𝑅 ∈ Ring)
21 eqid 2798 . . . . . . . . . 10 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
22 eqid 2798 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
23 eqid 2798 . . . . . . . . . 10 (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅))
24 simp3 1135 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀𝐵)
2524adantr 484 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑀𝐵)
26 simpr 488 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
272, 3, 4, 21, 23decpmatcl 21372 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑀𝐵𝑛 ∈ ℕ0) → (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅)))
2818, 25, 26, 27syl3anc 1368 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅)))
2928adantr 484 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅)))
3021, 22, 23, 14, 16, 29matecld 21031 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘𝑅))
31 simplr 768 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → 𝑛 ∈ ℕ0)
32 eqid 2798 . . . . . . . . . 10 (mulGrp‘𝑃) = (mulGrp‘𝑃)
33 eqid 2798 . . . . . . . . . 10 (Base‘𝑃) = (Base‘𝑃)
3422, 2, 7, 5, 32, 6, 33ply1tmcl 20901 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘𝑅) ∧ 𝑛 ∈ ℕ0) → ((𝑎(𝑀 decompPMat 𝑛)𝑏)( ·𝑠𝑃)(𝑛 𝑋)) ∈ (Base‘𝑃))
3520, 30, 31, 34syl3anc 1368 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → ((𝑎(𝑀 decompPMat 𝑛)𝑏)( ·𝑠𝑃)(𝑛 𝑋)) ∈ (Base‘𝑃))
3610, 13, 14, 16, 35ovmpod 7281 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠𝑃)(𝑛 𝑋)))𝑏) = ((𝑎(𝑀 decompPMat 𝑛)𝑏)( ·𝑠𝑃)(𝑛 𝑋)))
37 pmatcollpw.m . . . . . . . . 9 = ( ·𝑠𝐶)
38 pmatcollpw.t . . . . . . . . 9 𝑇 = (𝑁 matToPolyMat 𝑅)
392, 3, 4, 37, 6, 7, 38pmatcollpwlem 21385 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → ((𝑎(𝑀 decompPMat 𝑛)𝑏)( ·𝑠𝑃)(𝑛 𝑋)) = (𝑎((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛)))𝑏))
40393expb 1117 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → ((𝑎(𝑀 decompPMat 𝑛)𝑏)( ·𝑠𝑃)(𝑛 𝑋)) = (𝑎((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛)))𝑏))
4136, 40eqtrd 2833 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠𝑃)(𝑛 𝑋)))𝑏) = (𝑎((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛)))𝑏))
4241ralrimivva 3156 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → ∀𝑎𝑁𝑏𝑁 (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠𝑃)(𝑛 𝑋)))𝑏) = (𝑎((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛)))𝑏))
43 simpl1 1188 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ Fin)
442ply1ring 20877 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
451, 44syl 17 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
46453ad2ant2 1131 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 ∈ Ring)
4746adantr 484 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑃 ∈ Ring)
48193ad2ant1 1130 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
49 simp2 1134 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
50 simp3 1135 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
51283ad2ant1 1130 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅)))
5221, 22, 23, 49, 50, 51matecld 21031 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖(𝑀 decompPMat 𝑛)𝑗) ∈ (Base‘𝑅))
53263ad2ant1 1130 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑛 ∈ ℕ0)
5422, 2, 7, 5, 32, 6, 33ply1tmcl 20901 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑖(𝑀 decompPMat 𝑛)𝑗) ∈ (Base‘𝑅) ∧ 𝑛 ∈ ℕ0) → ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠𝑃)(𝑛 𝑋)) ∈ (Base‘𝑃))
5548, 52, 53, 54syl3anc 1368 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠𝑃)(𝑛 𝑋)) ∈ (Base‘𝑃))
563, 33, 4, 43, 47, 55matbas2d 21028 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠𝑃)(𝑛 𝑋))) ∈ 𝐵)
5713ad2ant2 1131 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
582, 7, 32, 6, 33ply1moncl 20900 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑛 ∈ ℕ0) → (𝑛 𝑋) ∈ (Base‘𝑃))
5957, 58sylan 583 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑛 𝑋) ∈ (Base‘𝑃))
6057adantr 484 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring)
6138, 21, 23, 2, 3mat2pmatbas 21331 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅))) → (𝑇‘(𝑀 decompPMat 𝑛)) ∈ (Base‘𝐶))
6243, 60, 28, 61syl3anc 1368 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(𝑀 decompPMat 𝑛)) ∈ (Base‘𝐶))
6362, 4eleqtrrdi 2901 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(𝑀 decompPMat 𝑛)) ∈ 𝐵)
6433, 3, 4, 37matvscl 21036 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ ((𝑛 𝑋) ∈ (Base‘𝑃) ∧ (𝑇‘(𝑀 decompPMat 𝑛)) ∈ 𝐵)) → ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))) ∈ 𝐵)
6543, 47, 59, 63, 64syl22anc 837 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))) ∈ 𝐵)
663, 4eqmat 21029 . . . . . 6 (((𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠𝑃)(𝑛 𝑋))) ∈ 𝐵 ∧ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))) ∈ 𝐵) → ((𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠𝑃)(𝑛 𝑋))) = ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))) ↔ ∀𝑎𝑁𝑏𝑁 (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠𝑃)(𝑛 𝑋)))𝑏) = (𝑎((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛)))𝑏)))
6756, 65, 66syl2anc 587 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠𝑃)(𝑛 𝑋))) = ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))) ↔ ∀𝑎𝑁𝑏𝑁 (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠𝑃)(𝑛 𝑋)))𝑏) = (𝑎((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛)))𝑏)))
6842, 67mpbird 260 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠𝑃)(𝑛 𝑋))) = ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))
6968mpteq2dva 5125 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠𝑃)(𝑛 𝑋)))) = (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛)))))
7069oveq2d 7151 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐶 Σg (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠𝑃)(𝑛 𝑋))))) = (𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))))
719, 70eqtrd 2833 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀 = (𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  cmpt 5110  cfv 6324  (class class class)co 7135  cmpo 7137  Fincfn 8492  0cn0 11885  Basecbs 16475   ·𝑠 cvsca 16561   Σg cgsu 16706  .gcmg 18216  mulGrpcmgp 19232  Ringcrg 19290  CRingccrg 19291  var1cv1 20805  Poly1cpl1 20806   Mat cmat 21012   matToPolyMat cmat2pmat 21309   decompPMat cdecpmat 21367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-srg 19249  df-ring 19292  df-cring 19293  df-subrg 19526  df-lmod 19629  df-lss 19697  df-sra 19937  df-rgmod 19938  df-dsmm 20421  df-frlm 20436  df-assa 20542  df-ascl 20544  df-psr 20594  df-mvr 20595  df-mpl 20596  df-opsr 20598  df-psr1 20809  df-vr1 20810  df-ply1 20811  df-coe1 20812  df-mat 21013  df-mat2pmat 21312  df-decpmat 21368
This theorem is referenced by:  pmatcollpwfi  21387  pmatcollpw3  21389  pmatcollpwscmat  21396
  Copyright terms: Public domain W3C validator