Step | Hyp | Ref
| Expression |
1 | | crngring 19795 |
. . 3
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
2 | | pmatcollpw.p |
. . . 4
⊢ 𝑃 = (Poly1‘𝑅) |
3 | | pmatcollpw.c |
. . . 4
⊢ 𝐶 = (𝑁 Mat 𝑃) |
4 | | pmatcollpw.b |
. . . 4
⊢ 𝐵 = (Base‘𝐶) |
5 | | eqid 2738 |
. . . 4
⊢ (
·𝑠 ‘𝑃) = ( ·𝑠
‘𝑃) |
6 | | pmatcollpw.e |
. . . 4
⊢ ↑ =
(.g‘(mulGrp‘𝑃)) |
7 | | pmatcollpw.x |
. . . 4
⊢ 𝑋 = (var1‘𝑅) |
8 | 2, 3, 4, 5, 6, 7 | pmatcollpw2 21927 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑀 = (𝐶 Σg (𝑛 ∈ ℕ0
↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠
‘𝑃)(𝑛 ↑ 𝑋)))))) |
9 | 1, 8 | syl3an2 1163 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑀 = (𝐶 Σg (𝑛 ∈ ℕ0
↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠
‘𝑃)(𝑛 ↑ 𝑋)))))) |
10 | | eqidd 2739 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠
‘𝑃)(𝑛 ↑ 𝑋))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠
‘𝑃)(𝑛 ↑ 𝑋)))) |
11 | | oveq12 7284 |
. . . . . . . . . 10
⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → (𝑖(𝑀 decompPMat 𝑛)𝑗) = (𝑎(𝑀 decompPMat 𝑛)𝑏)) |
12 | 11 | oveq1d 7290 |
. . . . . . . . 9
⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠
‘𝑃)(𝑛 ↑ 𝑋)) = ((𝑎(𝑀 decompPMat 𝑛)𝑏)( ·𝑠
‘𝑃)(𝑛 ↑ 𝑋))) |
13 | 12 | adantl 482 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ (𝑖 = 𝑎 ∧ 𝑗 = 𝑏)) → ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠
‘𝑃)(𝑛 ↑ 𝑋)) = ((𝑎(𝑀 decompPMat 𝑛)𝑏)( ·𝑠
‘𝑃)(𝑛 ↑ 𝑋))) |
14 | | simprl 768 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → 𝑎 ∈ 𝑁) |
15 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → 𝑏 ∈ 𝑁) |
16 | 15 | adantl 482 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → 𝑏 ∈ 𝑁) |
17 | | simp2 1136 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ CRing) |
18 | 17 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ CRing) |
19 | 18, 1 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring) |
20 | 19 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → 𝑅 ∈ Ring) |
21 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅) |
22 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝑅) =
(Base‘𝑅) |
23 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘(𝑁 Mat
𝑅)) = (Base‘(𝑁 Mat 𝑅)) |
24 | | simp3 1137 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) |
25 | 24 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑀 ∈ 𝐵) |
26 | | simpr 485 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℕ0) |
27 | 2, 3, 4, 21, 23 | decpmatcl 21916 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑛 ∈ ℕ0) → (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅))) |
28 | 18, 25, 26, 27 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅))) |
29 | 28 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅))) |
30 | 21, 22, 23, 14, 16, 29 | matecld 21575 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘𝑅)) |
31 | | simplr 766 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → 𝑛 ∈ ℕ0) |
32 | | eqid 2738 |
. . . . . . . . . 10
⊢
(mulGrp‘𝑃) =
(mulGrp‘𝑃) |
33 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝑃) =
(Base‘𝑃) |
34 | 22, 2, 7, 5, 32, 6,
33 | ply1tmcl 21443 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘𝑅) ∧ 𝑛 ∈ ℕ0) → ((𝑎(𝑀 decompPMat 𝑛)𝑏)( ·𝑠
‘𝑃)(𝑛 ↑ 𝑋)) ∈ (Base‘𝑃)) |
35 | 20, 30, 31, 34 | syl3anc 1370 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → ((𝑎(𝑀 decompPMat 𝑛)𝑏)( ·𝑠
‘𝑃)(𝑛 ↑ 𝑋)) ∈ (Base‘𝑃)) |
36 | 10, 13, 14, 16, 35 | ovmpod 7425 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠
‘𝑃)(𝑛 ↑ 𝑋)))𝑏) = ((𝑎(𝑀 decompPMat 𝑛)𝑏)( ·𝑠
‘𝑃)(𝑛 ↑ 𝑋))) |
37 | | pmatcollpw.m |
. . . . . . . . 9
⊢ ∗ = (
·𝑠 ‘𝐶) |
38 | | pmatcollpw.t |
. . . . . . . . 9
⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
39 | 2, 3, 4, 37, 6, 7,
38 | pmatcollpwlem 21929 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ((𝑎(𝑀 decompPMat 𝑛)𝑏)( ·𝑠
‘𝑃)(𝑛 ↑ 𝑋)) = (𝑎((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛)))𝑏)) |
40 | 39 | 3expb 1119 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → ((𝑎(𝑀 decompPMat 𝑛)𝑏)( ·𝑠
‘𝑃)(𝑛 ↑ 𝑋)) = (𝑎((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛)))𝑏)) |
41 | 36, 40 | eqtrd 2778 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠
‘𝑃)(𝑛 ↑ 𝑋)))𝑏) = (𝑎((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛)))𝑏)) |
42 | 41 | ralrimivva 3123 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) →
∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠
‘𝑃)(𝑛 ↑ 𝑋)))𝑏) = (𝑎((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛)))𝑏)) |
43 | | simpl1 1190 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ Fin) |
44 | 2 | ply1ring 21419 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
45 | 1, 44 | syl 17 |
. . . . . . . . 9
⊢ (𝑅 ∈ CRing → 𝑃 ∈ Ring) |
46 | 45 | 3ad2ant2 1133 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ Ring) |
47 | 46 | adantr 481 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑃 ∈ Ring) |
48 | 19 | 3ad2ant1 1132 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) |
49 | | simp2 1136 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
50 | | simp3 1137 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
51 | 28 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅))) |
52 | 21, 22, 23, 49, 50, 51 | matecld 21575 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖(𝑀 decompPMat 𝑛)𝑗) ∈ (Base‘𝑅)) |
53 | 26 | 3ad2ant1 1132 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑛 ∈ ℕ0) |
54 | 22, 2, 7, 5, 32, 6,
33 | ply1tmcl 21443 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑖(𝑀 decompPMat 𝑛)𝑗) ∈ (Base‘𝑅) ∧ 𝑛 ∈ ℕ0) → ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠
‘𝑃)(𝑛 ↑ 𝑋)) ∈ (Base‘𝑃)) |
55 | 48, 52, 53, 54 | syl3anc 1370 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠
‘𝑃)(𝑛 ↑ 𝑋)) ∈ (Base‘𝑃)) |
56 | 3, 33, 4, 43, 47, 55 | matbas2d 21572 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠
‘𝑃)(𝑛 ↑ 𝑋))) ∈ 𝐵) |
57 | 1 | 3ad2ant2 1133 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ Ring) |
58 | 2, 7, 32, 6, 33 | ply1moncl 21442 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑛 ∈ ℕ0)
→ (𝑛 ↑ 𝑋) ∈ (Base‘𝑃)) |
59 | 57, 58 | sylan 580 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑛 ↑ 𝑋) ∈ (Base‘𝑃)) |
60 | 57 | adantr 481 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring) |
61 | 38, 21, 23, 2, 3 | mat2pmatbas 21875 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅))) → (𝑇‘(𝑀 decompPMat 𝑛)) ∈ (Base‘𝐶)) |
62 | 43, 60, 28, 61 | syl3anc 1370 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(𝑀 decompPMat 𝑛)) ∈ (Base‘𝐶)) |
63 | 62, 4 | eleqtrrdi 2850 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(𝑀 decompPMat 𝑛)) ∈ 𝐵) |
64 | 33, 3, 4, 37 | matvscl 21580 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ ((𝑛 ↑ 𝑋) ∈ (Base‘𝑃) ∧ (𝑇‘(𝑀 decompPMat 𝑛)) ∈ 𝐵)) → ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛))) ∈ 𝐵) |
65 | 43, 47, 59, 63, 64 | syl22anc 836 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛))) ∈ 𝐵) |
66 | 3, 4 | eqmat 21573 |
. . . . . 6
⊢ (((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠
‘𝑃)(𝑛 ↑ 𝑋))) ∈ 𝐵 ∧ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛))) ∈ 𝐵) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠
‘𝑃)(𝑛 ↑ 𝑋))) = ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛))) ↔ ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠
‘𝑃)(𝑛 ↑ 𝑋)))𝑏) = (𝑎((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛)))𝑏))) |
67 | 56, 65, 66 | syl2anc 584 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠
‘𝑃)(𝑛 ↑ 𝑋))) = ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛))) ↔ ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠
‘𝑃)(𝑛 ↑ 𝑋)))𝑏) = (𝑎((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛)))𝑏))) |
68 | 42, 67 | mpbird 256 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠
‘𝑃)(𝑛 ↑ 𝑋))) = ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛)))) |
69 | 68 | mpteq2dva 5174 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠
‘𝑃)(𝑛 ↑ 𝑋)))) = (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛))))) |
70 | 69 | oveq2d 7291 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐶 Σg (𝑛 ∈ ℕ0
↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗)( ·𝑠
‘𝑃)(𝑛 ↑ 𝑋))))) = (𝐶 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛)))))) |
71 | 9, 70 | eqtrd 2778 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑀 = (𝐶 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛)))))) |