![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pmatcollpwscmat | Structured version Visualization version GIF version |
Description: Write a scalar matrix over polynomials (over a commutative ring) as a sum of the product of variable powers and constant scalar matrices with scalar entries. (Contributed by AV, 2-Nov-2019.) (Revised by AV, 4-Dec-2019.) |
Ref | Expression |
---|---|
pmatcollpwscmat.p | β’ π = (Poly1βπ ) |
pmatcollpwscmat.c | β’ πΆ = (π Mat π) |
pmatcollpwscmat.b | β’ π΅ = (BaseβπΆ) |
pmatcollpwscmat.m1 | β’ β = ( Β·π βπΆ) |
pmatcollpwscmat.e1 | β’ β = (.gβ(mulGrpβπ)) |
pmatcollpwscmat.x | β’ π = (var1βπ ) |
pmatcollpwscmat.t | β’ π = (π matToPolyMat π ) |
pmatcollpwscmat.a | β’ π΄ = (π Mat π ) |
pmatcollpwscmat.d | β’ π· = (Baseβπ΄) |
pmatcollpwscmat.u | β’ π = (algScβπ) |
pmatcollpwscmat.k | β’ πΎ = (Baseβπ ) |
pmatcollpwscmat.e2 | β’ πΈ = (Baseβπ) |
pmatcollpwscmat.s | β’ π = (algScβπ) |
pmatcollpwscmat.1 | β’ 1 = (1rβπΆ) |
pmatcollpwscmat.m2 | β’ π = (π β 1 ) |
Ref | Expression |
---|---|
pmatcollpwscmat | β’ ((π β Fin β§ π β CRing β§ π β πΈ) β π = (πΆ Ξ£g (π β β0 β¦ ((π β π) β ((πβ((coe1βπ)βπ)) β 1 ))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngring 20140 | . . . 4 β’ (π β CRing β π β Ring) | |
2 | pmatcollpwscmat.m2 | . . . . 5 β’ π = (π β 1 ) | |
3 | pmatcollpwscmat.p | . . . . . 6 β’ π = (Poly1βπ ) | |
4 | pmatcollpwscmat.c | . . . . . 6 β’ πΆ = (π Mat π) | |
5 | pmatcollpwscmat.b | . . . . . 6 β’ π΅ = (BaseβπΆ) | |
6 | pmatcollpwscmat.e2 | . . . . . 6 β’ πΈ = (Baseβπ) | |
7 | pmatcollpwscmat.m1 | . . . . . 6 β’ β = ( Β·π βπΆ) | |
8 | pmatcollpwscmat.1 | . . . . . 6 β’ 1 = (1rβπΆ) | |
9 | 3, 4, 5, 6, 7, 8 | 1pmatscmul 22425 | . . . . 5 β’ ((π β Fin β§ π β Ring β§ π β πΈ) β (π β 1 ) β π΅) |
10 | 2, 9 | eqeltrid 2836 | . . . 4 β’ ((π β Fin β§ π β Ring β§ π β πΈ) β π β π΅) |
11 | 1, 10 | syl3an2 1163 | . . 3 β’ ((π β Fin β§ π β CRing β§ π β πΈ) β π β π΅) |
12 | pmatcollpwscmat.e1 | . . . 4 β’ β = (.gβ(mulGrpβπ)) | |
13 | pmatcollpwscmat.x | . . . 4 β’ π = (var1βπ ) | |
14 | pmatcollpwscmat.t | . . . 4 β’ π = (π matToPolyMat π ) | |
15 | 3, 4, 5, 7, 12, 13, 14 | pmatcollpw 22504 | . . 3 β’ ((π β Fin β§ π β CRing β§ π β π΅) β π = (πΆ Ξ£g (π β β0 β¦ ((π β π) β (πβ(π decompPMat π)))))) |
16 | 11, 15 | syld3an3 1408 | . 2 β’ ((π β Fin β§ π β CRing β§ π β πΈ) β π = (πΆ Ξ£g (π β β0 β¦ ((π β π) β (πβ(π decompPMat π)))))) |
17 | 1 | anim2i 616 | . . . . . . 7 β’ ((π β Fin β§ π β CRing) β (π β Fin β§ π β Ring)) |
18 | 17 | 3adant3 1131 | . . . . . 6 β’ ((π β Fin β§ π β CRing β§ π β πΈ) β (π β Fin β§ π β Ring)) |
19 | simp3 1137 | . . . . . . 7 β’ ((π β Fin β§ π β CRing β§ π β πΈ) β π β πΈ) | |
20 | 19 | anim1ci 615 | . . . . . 6 β’ (((π β Fin β§ π β CRing β§ π β πΈ) β§ π β β0) β (π β β0 β§ π β πΈ)) |
21 | pmatcollpwscmat.a | . . . . . . 7 β’ π΄ = (π Mat π ) | |
22 | pmatcollpwscmat.d | . . . . . . 7 β’ π· = (Baseβπ΄) | |
23 | pmatcollpwscmat.u | . . . . . . 7 β’ π = (algScβπ) | |
24 | pmatcollpwscmat.k | . . . . . . 7 β’ πΎ = (Baseβπ ) | |
25 | pmatcollpwscmat.s | . . . . . . 7 β’ π = (algScβπ) | |
26 | 3, 4, 5, 7, 12, 13, 14, 21, 22, 23, 24, 6, 25, 8, 2 | pmatcollpwscmatlem2 22513 | . . . . . 6 β’ (((π β Fin β§ π β Ring) β§ (π β β0 β§ π β πΈ)) β (πβ(π decompPMat π)) = ((πβ((coe1βπ)βπ)) β 1 )) |
27 | 18, 20, 26 | syl2an2r 682 | . . . . 5 β’ (((π β Fin β§ π β CRing β§ π β πΈ) β§ π β β0) β (πβ(π decompPMat π)) = ((πβ((coe1βπ)βπ)) β 1 )) |
28 | 27 | oveq2d 7428 | . . . 4 β’ (((π β Fin β§ π β CRing β§ π β πΈ) β§ π β β0) β ((π β π) β (πβ(π decompPMat π))) = ((π β π) β ((πβ((coe1βπ)βπ)) β 1 ))) |
29 | 28 | mpteq2dva 5248 | . . 3 β’ ((π β Fin β§ π β CRing β§ π β πΈ) β (π β β0 β¦ ((π β π) β (πβ(π decompPMat π)))) = (π β β0 β¦ ((π β π) β ((πβ((coe1βπ)βπ)) β 1 )))) |
30 | 29 | oveq2d 7428 | . 2 β’ ((π β Fin β§ π β CRing β§ π β πΈ) β (πΆ Ξ£g (π β β0 β¦ ((π β π) β (πβ(π decompPMat π))))) = (πΆ Ξ£g (π β β0 β¦ ((π β π) β ((πβ((coe1βπ)βπ)) β 1 ))))) |
31 | 16, 30 | eqtrd 2771 | 1 β’ ((π β Fin β§ π β CRing β§ π β πΈ) β π = (πΆ Ξ£g (π β β0 β¦ ((π β π) β ((πβ((coe1βπ)βπ)) β 1 ))))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 β¦ cmpt 5231 βcfv 6543 (class class class)co 7412 Fincfn 8943 β0cn0 12477 Basecbs 17149 Β·π cvsca 17206 Ξ£g cgsu 17391 .gcmg 18987 mulGrpcmgp 20029 1rcur 20076 Ringcrg 20128 CRingccrg 20129 algSccascl 21627 var1cv1 21920 Poly1cpl1 21921 coe1cco1 21922 Mat cmat 22128 matToPolyMat cmat2pmat 22427 decompPMat cdecpmat 22485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-ot 4637 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-ofr 7675 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8151 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-pm 8827 df-ixp 8896 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-fsupp 9366 df-sup 9441 df-oi 9509 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-fz 13490 df-fzo 13633 df-seq 13972 df-hash 14296 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-hom 17226 df-cco 17227 df-0g 17392 df-gsum 17393 df-prds 17398 df-pws 17400 df-mre 17535 df-mrc 17536 df-acs 17538 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-mhm 18706 df-submnd 18707 df-grp 18859 df-minusg 18860 df-sbg 18861 df-mulg 18988 df-subg 19040 df-ghm 19129 df-cntz 19223 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-srg 20082 df-ring 20130 df-cring 20131 df-subrng 20435 df-subrg 20460 df-lmod 20617 df-lss 20688 df-sra 20931 df-rgmod 20932 df-dsmm 21507 df-frlm 21522 df-assa 21628 df-ascl 21630 df-psr 21682 df-mvr 21683 df-mpl 21684 df-opsr 21686 df-psr1 21924 df-vr1 21925 df-ply1 21926 df-coe1 21927 df-mamu 22107 df-mat 22129 df-mat2pmat 22430 df-decpmat 22486 |
This theorem is referenced by: cpmidgsum 22591 |
Copyright terms: Public domain | W3C validator |