| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > chfacfpmmulcl | Structured version Visualization version GIF version | ||
| Description: Closure of the value of the "characteristic factor function" multiplied with a constant polynomial matrix. (Contributed by AV, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| cayhamlem1.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| cayhamlem1.b | ⊢ 𝐵 = (Base‘𝐴) |
| cayhamlem1.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| cayhamlem1.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
| cayhamlem1.r | ⊢ × = (.r‘𝑌) |
| cayhamlem1.s | ⊢ − = (-g‘𝑌) |
| cayhamlem1.0 | ⊢ 0 = (0g‘𝑌) |
| cayhamlem1.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| cayhamlem1.g | ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) |
| cayhamlem1.e | ⊢ ↑ = (.g‘(mulGrp‘𝑌)) |
| Ref | Expression |
|---|---|
| chfacfpmmulcl | ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → ((𝐾 ↑ (𝑇‘𝑀)) × (𝐺‘𝐾)) ∈ (Base‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngring 20210 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 2 | cayhamlem1.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 3 | cayhamlem1.y | . . . . . 6 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
| 4 | 2, 3 | pmatring 22646 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring) |
| 5 | 1, 4 | sylan2 593 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ Ring) |
| 6 | 5 | 3adant3 1132 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ Ring) |
| 7 | 6 | 3ad2ant1 1133 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → 𝑌 ∈ Ring) |
| 8 | eqid 2734 | . . . 4 ⊢ (mulGrp‘𝑌) = (mulGrp‘𝑌) | |
| 9 | eqid 2734 | . . . 4 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
| 10 | 8, 9 | mgpbas 20110 | . . 3 ⊢ (Base‘𝑌) = (Base‘(mulGrp‘𝑌)) |
| 11 | cayhamlem1.e | . . 3 ⊢ ↑ = (.g‘(mulGrp‘𝑌)) | |
| 12 | 8 | ringmgp 20204 | . . . . 5 ⊢ (𝑌 ∈ Ring → (mulGrp‘𝑌) ∈ Mnd) |
| 13 | 6, 12 | syl 17 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (mulGrp‘𝑌) ∈ Mnd) |
| 14 | 13 | 3ad2ant1 1133 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (mulGrp‘𝑌) ∈ Mnd) |
| 15 | simp3 1138 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0) | |
| 16 | cayhamlem1.t | . . . . . 6 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
| 17 | cayhamlem1.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 18 | cayhamlem1.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
| 19 | 16, 17, 18, 2, 3 | mat2pmatbas 22680 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ (Base‘𝑌)) |
| 20 | 1, 19 | syl3an2 1164 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ (Base‘𝑌)) |
| 21 | 20 | 3ad2ant1 1133 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (𝑇‘𝑀) ∈ (Base‘𝑌)) |
| 22 | 10, 11, 14, 15, 21 | mulgnn0cld 19082 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (𝐾 ↑ (𝑇‘𝑀)) ∈ (Base‘𝑌)) |
| 23 | cayhamlem1.r | . . . . . 6 ⊢ × = (.r‘𝑌) | |
| 24 | cayhamlem1.s | . . . . . 6 ⊢ − = (-g‘𝑌) | |
| 25 | cayhamlem1.0 | . . . . . 6 ⊢ 0 = (0g‘𝑌) | |
| 26 | cayhamlem1.g | . . . . . 6 ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) | |
| 27 | 17, 18, 2, 3, 23, 24, 25, 16, 26 | chfacfisf 22808 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝐺:ℕ0⟶(Base‘𝑌)) |
| 28 | 1, 27 | syl3anl2 1414 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝐺:ℕ0⟶(Base‘𝑌)) |
| 29 | 28 | 3adant3 1132 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → 𝐺:ℕ0⟶(Base‘𝑌)) |
| 30 | 29, 15 | ffvelcdmd 7085 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (𝐺‘𝐾) ∈ (Base‘𝑌)) |
| 31 | 9, 23 | ringcl 20215 | . 2 ⊢ ((𝑌 ∈ Ring ∧ (𝐾 ↑ (𝑇‘𝑀)) ∈ (Base‘𝑌) ∧ (𝐺‘𝐾) ∈ (Base‘𝑌)) → ((𝐾 ↑ (𝑇‘𝑀)) × (𝐺‘𝐾)) ∈ (Base‘𝑌)) |
| 32 | 7, 22, 30, 31 | syl3anc 1372 | 1 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → ((𝐾 ↑ (𝑇‘𝑀)) × (𝐺‘𝐾)) ∈ (Base‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ifcif 4505 class class class wbr 5123 ↦ cmpt 5205 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 ↑m cmap 8848 Fincfn 8967 0cc0 11137 1c1 11138 + caddc 11140 < clt 11277 − cmin 11474 ℕcn 12248 ℕ0cn0 12509 ...cfz 13529 Basecbs 17229 .rcmulr 17274 0gc0g 17455 Mndcmnd 18716 -gcsg 18922 .gcmg 19054 mulGrpcmgp 20105 Ringcrg 20198 CRingccrg 20199 Poly1cpl1 22126 Mat cmat 22359 matToPolyMat cmat2pmat 22658 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-ot 4615 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-ofr 7680 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8727 df-map 8850 df-pm 8851 df-ixp 8920 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-fsupp 9384 df-sup 9464 df-oi 9532 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-fz 13530 df-fzo 13677 df-seq 14025 df-hash 14352 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-mulr 17287 df-sca 17289 df-vsca 17290 df-ip 17291 df-tset 17292 df-ple 17293 df-ds 17295 df-hom 17297 df-cco 17298 df-0g 17457 df-gsum 17458 df-prds 17463 df-pws 17465 df-mre 17600 df-mrc 17601 df-acs 17603 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-mhm 18765 df-submnd 18766 df-grp 18923 df-minusg 18924 df-sbg 18925 df-mulg 19055 df-subg 19110 df-ghm 19200 df-cntz 19304 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-cring 20201 df-subrng 20514 df-subrg 20538 df-lmod 20828 df-lss 20898 df-sra 21140 df-rgmod 21141 df-dsmm 21706 df-frlm 21721 df-ascl 21829 df-psr 21883 df-mpl 21885 df-opsr 21887 df-psr1 22129 df-ply1 22131 df-mamu 22343 df-mat 22360 df-mat2pmat 22661 |
| This theorem is referenced by: chfacfpmmulgsum 22818 |
| Copyright terms: Public domain | W3C validator |