| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > chfacfpmmulcl | Structured version Visualization version GIF version | ||
| Description: Closure of the value of the "characteristic factor function" multiplied with a constant polynomial matrix. (Contributed by AV, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| cayhamlem1.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| cayhamlem1.b | ⊢ 𝐵 = (Base‘𝐴) |
| cayhamlem1.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| cayhamlem1.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
| cayhamlem1.r | ⊢ × = (.r‘𝑌) |
| cayhamlem1.s | ⊢ − = (-g‘𝑌) |
| cayhamlem1.0 | ⊢ 0 = (0g‘𝑌) |
| cayhamlem1.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| cayhamlem1.g | ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) |
| cayhamlem1.e | ⊢ ↑ = (.g‘(mulGrp‘𝑌)) |
| Ref | Expression |
|---|---|
| chfacfpmmulcl | ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → ((𝐾 ↑ (𝑇‘𝑀)) × (𝐺‘𝐾)) ∈ (Base‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngring 20130 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 2 | cayhamlem1.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 3 | cayhamlem1.y | . . . . . 6 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
| 4 | 2, 3 | pmatring 22555 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring) |
| 5 | 1, 4 | sylan2 593 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ Ring) |
| 6 | 5 | 3adant3 1132 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ Ring) |
| 7 | 6 | 3ad2ant1 1133 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → 𝑌 ∈ Ring) |
| 8 | eqid 2729 | . . . 4 ⊢ (mulGrp‘𝑌) = (mulGrp‘𝑌) | |
| 9 | eqid 2729 | . . . 4 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
| 10 | 8, 9 | mgpbas 20030 | . . 3 ⊢ (Base‘𝑌) = (Base‘(mulGrp‘𝑌)) |
| 11 | cayhamlem1.e | . . 3 ⊢ ↑ = (.g‘(mulGrp‘𝑌)) | |
| 12 | 8 | ringmgp 20124 | . . . . 5 ⊢ (𝑌 ∈ Ring → (mulGrp‘𝑌) ∈ Mnd) |
| 13 | 6, 12 | syl 17 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (mulGrp‘𝑌) ∈ Mnd) |
| 14 | 13 | 3ad2ant1 1133 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (mulGrp‘𝑌) ∈ Mnd) |
| 15 | simp3 1138 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0) | |
| 16 | cayhamlem1.t | . . . . . 6 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
| 17 | cayhamlem1.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 18 | cayhamlem1.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
| 19 | 16, 17, 18, 2, 3 | mat2pmatbas 22589 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ (Base‘𝑌)) |
| 20 | 1, 19 | syl3an2 1164 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ (Base‘𝑌)) |
| 21 | 20 | 3ad2ant1 1133 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (𝑇‘𝑀) ∈ (Base‘𝑌)) |
| 22 | 10, 11, 14, 15, 21 | mulgnn0cld 19003 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (𝐾 ↑ (𝑇‘𝑀)) ∈ (Base‘𝑌)) |
| 23 | cayhamlem1.r | . . . . . 6 ⊢ × = (.r‘𝑌) | |
| 24 | cayhamlem1.s | . . . . . 6 ⊢ − = (-g‘𝑌) | |
| 25 | cayhamlem1.0 | . . . . . 6 ⊢ 0 = (0g‘𝑌) | |
| 26 | cayhamlem1.g | . . . . . 6 ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) | |
| 27 | 17, 18, 2, 3, 23, 24, 25, 16, 26 | chfacfisf 22717 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝐺:ℕ0⟶(Base‘𝑌)) |
| 28 | 1, 27 | syl3anl2 1415 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝐺:ℕ0⟶(Base‘𝑌)) |
| 29 | 28 | 3adant3 1132 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → 𝐺:ℕ0⟶(Base‘𝑌)) |
| 30 | 29, 15 | ffvelcdmd 7039 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → (𝐺‘𝐾) ∈ (Base‘𝑌)) |
| 31 | 9, 23 | ringcl 20135 | . 2 ⊢ ((𝑌 ∈ Ring ∧ (𝐾 ↑ (𝑇‘𝑀)) ∈ (Base‘𝑌) ∧ (𝐺‘𝐾) ∈ (Base‘𝑌)) → ((𝐾 ↑ (𝑇‘𝑀)) × (𝐺‘𝐾)) ∈ (Base‘𝑌)) |
| 32 | 7, 22, 30, 31 | syl3anc 1373 | 1 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → ((𝐾 ↑ (𝑇‘𝑀)) × (𝐺‘𝐾)) ∈ (Base‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ifcif 4484 class class class wbr 5102 ↦ cmpt 5183 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 Fincfn 8895 0cc0 11044 1c1 11045 + caddc 11047 < clt 11184 − cmin 11381 ℕcn 12162 ℕ0cn0 12418 ...cfz 13444 Basecbs 17155 .rcmulr 17197 0gc0g 17378 Mndcmnd 18637 -gcsg 18843 .gcmg 18975 mulGrpcmgp 20025 Ringcrg 20118 CRingccrg 20119 Poly1cpl1 22037 Mat cmat 22270 matToPolyMat cmat2pmat 22567 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-ot 4594 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-ofr 7634 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17380 df-gsum 17381 df-prds 17386 df-pws 17388 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-ghm 19121 df-cntz 19225 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-subrng 20431 df-subrg 20455 df-lmod 20744 df-lss 20814 df-sra 21056 df-rgmod 21057 df-dsmm 21617 df-frlm 21632 df-ascl 21740 df-psr 21794 df-mpl 21796 df-opsr 21798 df-psr1 22040 df-ply1 22042 df-mamu 22254 df-mat 22271 df-mat2pmat 22570 |
| This theorem is referenced by: chfacfpmmulgsum 22727 |
| Copyright terms: Public domain | W3C validator |