MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgfixfolem1 Structured version   Visualization version   GIF version

Theorem symgfixfolem1 19374
Description: Lemma 1 for symgfixfo 19375. (Contributed by AV, 7-Jan-2019.)
Hypotheses
Ref Expression
symgfixf.p 𝑃 = (Base‘(SymGrp‘𝑁))
symgfixf.q 𝑄 = {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}
symgfixf.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgfixf.h 𝐻 = (𝑞𝑄 ↦ (𝑞 ↾ (𝑁 ∖ {𝐾})))
symgfixfo.e 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
Assertion
Ref Expression
symgfixfolem1 ((𝑁𝑉𝐾𝑁𝑍𝑆) → 𝐸𝑄)
Distinct variable groups:   𝐾,𝑞   𝑃,𝑞   𝑁,𝑞   𝑄,𝑞   𝑆,𝑞   𝑥,𝐸   𝑥,𝐾   𝑥,𝑁   𝑥,𝑆   𝑥,𝑉   𝑥,𝑍
Allowed substitution hints:   𝑃(𝑥)   𝑄(𝑥)   𝐸(𝑞)   𝐻(𝑥,𝑞)   𝑉(𝑞)   𝑍(𝑞)

Proof of Theorem symgfixfolem1
StepHypRef Expression
1 symgfixf.s . . . 4 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
2 symgfixfo.e . . . 4 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
31, 2symgextf1o 19359 . . 3 ((𝐾𝑁𝑍𝑆) → 𝐸:𝑁1-1-onto𝑁)
433adant1 1130 . 2 ((𝑁𝑉𝐾𝑁𝑍𝑆) → 𝐸:𝑁1-1-onto𝑁)
5 iftrue 4496 . . 3 (𝑥 = 𝐾 → if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)) = 𝐾)
6 simp2 1137 . . 3 ((𝑁𝑉𝐾𝑁𝑍𝑆) → 𝐾𝑁)
72, 5, 6, 6fvmptd3 6993 . 2 ((𝑁𝑉𝐾𝑁𝑍𝑆) → (𝐸𝐾) = 𝐾)
8 mptexg 7197 . . . . 5 (𝑁𝑉 → (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥))) ∈ V)
983ad2ant1 1133 . . . 4 ((𝑁𝑉𝐾𝑁𝑍𝑆) → (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥))) ∈ V)
102, 9eqeltrid 2833 . . 3 ((𝑁𝑉𝐾𝑁𝑍𝑆) → 𝐸 ∈ V)
11 symgfixf.p . . . 4 𝑃 = (Base‘(SymGrp‘𝑁))
12 symgfixf.q . . . 4 𝑄 = {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}
1311, 12symgfixelq 19369 . . 3 (𝐸 ∈ V → (𝐸𝑄 ↔ (𝐸:𝑁1-1-onto𝑁 ∧ (𝐸𝐾) = 𝐾)))
1410, 13syl 17 . 2 ((𝑁𝑉𝐾𝑁𝑍𝑆) → (𝐸𝑄 ↔ (𝐸:𝑁1-1-onto𝑁 ∧ (𝐸𝐾) = 𝐾)))
154, 7, 14mpbir2and 713 1 ((𝑁𝑉𝐾𝑁𝑍𝑆) → 𝐸𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  cdif 3913  ifcif 4490  {csn 4591  cmpt 5190  cres 5642  1-1-ontowf1o 6512  cfv 6513  Basecbs 17185  SymGrpcsymg 19305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-map 8803  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-uz 12800  df-fz 13475  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-tset 17245  df-efmnd 18802  df-symg 19306
This theorem is referenced by:  symgfixfo  19375
  Copyright terms: Public domain W3C validator