MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrwlkvtxedg Structured version   Visualization version   GIF version

Theorem upgrwlkvtxedg 27413
Description: The pairs of connected vertices of a walk are edges in a pseudograph. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 2-Jan-2021.)
Hypothesis
Ref Expression
wlkvtxedg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
upgrwlkvtxedg ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸)
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑃,𝑘
Allowed substitution hint:   𝐸(𝑘)

Proof of Theorem upgrwlkvtxedg
StepHypRef Expression
1 eqid 2821 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2821 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2upgriswlk 27409 . . 3 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
4 wlkvtxedg.e . . . . . . . . . . 11 𝐸 = (Edg‘𝐺)
52, 4upgredginwlk 27404 . . . . . . . . . 10 ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (𝑘 ∈ (0..^(♯‘𝐹)) → ((iEdg‘𝐺)‘(𝐹𝑘)) ∈ 𝐸))
65ancoms 462 . . . . . . . . 9 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → (𝑘 ∈ (0..^(♯‘𝐹)) → ((iEdg‘𝐺)‘(𝐹𝑘)) ∈ 𝐸))
76imp 410 . . . . . . . 8 (((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝐺)‘(𝐹𝑘)) ∈ 𝐸)
8 eleq1 2899 . . . . . . . . 9 ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} = ((iEdg‘𝐺)‘(𝐹𝑘)) → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 ↔ ((iEdg‘𝐺)‘(𝐹𝑘)) ∈ 𝐸))
98eqcoms 2829 . . . . . . . 8 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 ↔ ((iEdg‘𝐺)‘(𝐹𝑘)) ∈ 𝐸))
107, 9syl5ibrcom 250 . . . . . . 7 (((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸))
1110ralimdva 3165 . . . . . 6 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → (∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸))
1211impancom 455 . . . . 5 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → (𝐺 ∈ UPGraph → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸))
13123adant2 1128 . . . 4 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → (𝐺 ∈ UPGraph → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸))
1413com12 32 . . 3 (𝐺 ∈ UPGraph → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸))
153, 14sylbid 243 . 2 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸))
1615imp 410 1 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wral 3126  {cpr 4542   class class class wbr 5039  dom cdm 5528  wf 6324  cfv 6328  (class class class)co 7130  0cc0 10514  1c1 10515   + caddc 10517  ...cfz 12875  ..^cfzo 13016  chash 13674  Word cword 13845  Vtxcvtx 26768  iEdgciedg 26769  Edgcedg 26819  UPGraphcupgr 26852  Walkscwlks 27365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-2o 8078  df-oadd 8081  df-er 8264  df-map 8383  df-pm 8384  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-dju 9306  df-card 9344  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-2 11678  df-n0 11876  df-xnn0 11946  df-z 11960  df-uz 12222  df-fz 12876  df-fzo 13017  df-hash 13675  df-word 13846  df-edg 26820  df-uhgr 26830  df-upgr 26854  df-wlks 27368
This theorem is referenced by:  umgrwlknloop  27417  wlknewwlksn  27652  upgr3v3e3cycl  27944  upgr4cycl4dv4e  27949
  Copyright terms: Public domain W3C validator