![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgrwlkvtxedg | Structured version Visualization version GIF version |
Description: The pairs of connected vertices of a walk are edges in a pseudograph. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 2-Jan-2021.) |
Ref | Expression |
---|---|
wlkvtxedg.e | β’ πΈ = (EdgβπΊ) |
Ref | Expression |
---|---|
upgrwlkvtxedg | β’ ((πΊ β UPGraph β§ πΉ(WalksβπΊ)π) β βπ β (0..^(β―βπΉ)){(πβπ), (πβ(π + 1))} β πΈ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . . 4 β’ (VtxβπΊ) = (VtxβπΊ) | |
2 | eqid 2731 | . . . 4 β’ (iEdgβπΊ) = (iEdgβπΊ) | |
3 | 1, 2 | upgriswlk 29162 | . . 3 β’ (πΊ β UPGraph β (πΉ(WalksβπΊ)π β (πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))}))) |
4 | wlkvtxedg.e | . . . . . . . . . . 11 β’ πΈ = (EdgβπΊ) | |
5 | 2, 4 | upgredginwlk 29157 | . . . . . . . . . 10 β’ ((πΊ β UPGraph β§ πΉ β Word dom (iEdgβπΊ)) β (π β (0..^(β―βπΉ)) β ((iEdgβπΊ)β(πΉβπ)) β πΈ)) |
6 | 5 | ancoms 458 | . . . . . . . . 9 β’ ((πΉ β Word dom (iEdgβπΊ) β§ πΊ β UPGraph) β (π β (0..^(β―βπΉ)) β ((iEdgβπΊ)β(πΉβπ)) β πΈ)) |
7 | 6 | imp 406 | . . . . . . . 8 β’ (((πΉ β Word dom (iEdgβπΊ) β§ πΊ β UPGraph) β§ π β (0..^(β―βπΉ))) β ((iEdgβπΊ)β(πΉβπ)) β πΈ) |
8 | eleq1 2820 | . . . . . . . . 9 β’ ({(πβπ), (πβ(π + 1))} = ((iEdgβπΊ)β(πΉβπ)) β ({(πβπ), (πβ(π + 1))} β πΈ β ((iEdgβπΊ)β(πΉβπ)) β πΈ)) | |
9 | 8 | eqcoms 2739 | . . . . . . . 8 β’ (((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))} β ({(πβπ), (πβ(π + 1))} β πΈ β ((iEdgβπΊ)β(πΉβπ)) β πΈ)) |
10 | 7, 9 | syl5ibrcom 246 | . . . . . . 7 β’ (((πΉ β Word dom (iEdgβπΊ) β§ πΊ β UPGraph) β§ π β (0..^(β―βπΉ))) β (((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))} β {(πβπ), (πβ(π + 1))} β πΈ)) |
11 | 10 | ralimdva 3166 | . . . . . 6 β’ ((πΉ β Word dom (iEdgβπΊ) β§ πΊ β UPGraph) β (βπ β (0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))} β βπ β (0..^(β―βπΉ)){(πβπ), (πβ(π + 1))} β πΈ)) |
12 | 11 | impancom 451 | . . . . 5 β’ ((πΉ β Word dom (iEdgβπΊ) β§ βπ β (0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β (πΊ β UPGraph β βπ β (0..^(β―βπΉ)){(πβπ), (πβ(π + 1))} β πΈ)) |
13 | 12 | 3adant2 1130 | . . . 4 β’ ((πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β (πΊ β UPGraph β βπ β (0..^(β―βπΉ)){(πβπ), (πβ(π + 1))} β πΈ)) |
14 | 13 | com12 32 | . . 3 β’ (πΊ β UPGraph β ((πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β βπ β (0..^(β―βπΉ)){(πβπ), (πβ(π + 1))} β πΈ)) |
15 | 3, 14 | sylbid 239 | . 2 β’ (πΊ β UPGraph β (πΉ(WalksβπΊ)π β βπ β (0..^(β―βπΉ)){(πβπ), (πβ(π + 1))} β πΈ)) |
16 | 15 | imp 406 | 1 β’ ((πΊ β UPGraph β§ πΉ(WalksβπΊ)π) β βπ β (0..^(β―βπΉ)){(πβπ), (πβ(π + 1))} β πΈ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 βwral 3060 {cpr 4631 class class class wbr 5149 dom cdm 5677 βΆwf 6540 βcfv 6544 (class class class)co 7412 0cc0 11113 1c1 11114 + caddc 11116 ...cfz 13489 ..^cfzo 13632 β―chash 14295 Word cword 14469 Vtxcvtx 28520 iEdgciedg 28521 Edgcedg 28571 UPGraphcupgr 28604 Walkscwlks 29117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-2o 8470 df-oadd 8473 df-er 8706 df-map 8825 df-pm 8826 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-dju 9899 df-card 9937 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-n0 12478 df-xnn0 12550 df-z 12564 df-uz 12828 df-fz 13490 df-fzo 13633 df-hash 14296 df-word 14470 df-edg 28572 df-uhgr 28582 df-upgr 28606 df-wlks 29120 |
This theorem is referenced by: umgrwlknloop 29170 wlknewwlksn 29405 upgr3v3e3cycl 29697 upgr4cycl4dv4e 29702 |
Copyright terms: Public domain | W3C validator |