MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrwlkvtxedg Structured version   Visualization version   GIF version

Theorem upgrwlkvtxedg 29582
Description: The pairs of connected vertices of a walk are edges in a pseudograph. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 2-Jan-2021.)
Hypothesis
Ref Expression
wlkvtxedg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
upgrwlkvtxedg ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸)
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑃,𝑘
Allowed substitution hint:   𝐸(𝑘)

Proof of Theorem upgrwlkvtxedg
StepHypRef Expression
1 eqid 2726 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2726 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2upgriswlk 29578 . . 3 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
4 wlkvtxedg.e . . . . . . . . . . 11 𝐸 = (Edg‘𝐺)
52, 4upgredginwlk 29573 . . . . . . . . . 10 ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (𝑘 ∈ (0..^(♯‘𝐹)) → ((iEdg‘𝐺)‘(𝐹𝑘)) ∈ 𝐸))
65ancoms 457 . . . . . . . . 9 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → (𝑘 ∈ (0..^(♯‘𝐹)) → ((iEdg‘𝐺)‘(𝐹𝑘)) ∈ 𝐸))
76imp 405 . . . . . . . 8 (((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝐺)‘(𝐹𝑘)) ∈ 𝐸)
8 eleq1 2814 . . . . . . . . 9 ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} = ((iEdg‘𝐺)‘(𝐹𝑘)) → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 ↔ ((iEdg‘𝐺)‘(𝐹𝑘)) ∈ 𝐸))
98eqcoms 2734 . . . . . . . 8 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 ↔ ((iEdg‘𝐺)‘(𝐹𝑘)) ∈ 𝐸))
107, 9syl5ibrcom 246 . . . . . . 7 (((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸))
1110ralimdva 3157 . . . . . 6 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → (∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸))
1211impancom 450 . . . . 5 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → (𝐺 ∈ UPGraph → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸))
13123adant2 1128 . . . 4 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → (𝐺 ∈ UPGraph → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸))
1413com12 32 . . 3 (𝐺 ∈ UPGraph → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸))
153, 14sylbid 239 . 2 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸))
1615imp 405 1 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wral 3051  {cpr 4635   class class class wbr 5153  dom cdm 5682  wf 6550  cfv 6554  (class class class)co 7424  0cc0 11158  1c1 11159   + caddc 11161  ...cfz 13538  ..^cfzo 13681  chash 14347  Word cword 14522  Vtxcvtx 28932  iEdgciedg 28933  Edgcedg 28983  UPGraphcupgr 29016  Walkscwlks 29533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ifp 1061  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-oadd 8500  df-er 8734  df-map 8857  df-pm 8858  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-dju 9944  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-n0 12525  df-xnn0 12597  df-z 12611  df-uz 12875  df-fz 13539  df-fzo 13682  df-hash 14348  df-word 14523  df-edg 28984  df-uhgr 28994  df-upgr 29018  df-wlks 29536
This theorem is referenced by:  umgrwlknloop  29586  wlknewwlksn  29821  upgr3v3e3cycl  30113  upgr4cycl4dv4e  30118
  Copyright terms: Public domain W3C validator