Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > upgrwlkvtxedg | Structured version Visualization version GIF version |
Description: The pairs of connected vertices of a walk are edges in a pseudograph. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 2-Jan-2021.) |
Ref | Expression |
---|---|
wlkvtxedg.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
upgrwlkvtxedg | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | eqid 2740 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
3 | 1, 2 | upgriswlk 27997 | . . 3 ⊢ (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
4 | wlkvtxedg.e | . . . . . . . . . . 11 ⊢ 𝐸 = (Edg‘𝐺) | |
5 | 2, 4 | upgredginwlk 27992 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (𝑘 ∈ (0..^(♯‘𝐹)) → ((iEdg‘𝐺)‘(𝐹‘𝑘)) ∈ 𝐸)) |
6 | 5 | ancoms 459 | . . . . . . . . 9 ⊢ ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → (𝑘 ∈ (0..^(♯‘𝐹)) → ((iEdg‘𝐺)‘(𝐹‘𝑘)) ∈ 𝐸)) |
7 | 6 | imp 407 | . . . . . . . 8 ⊢ (((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝐺)‘(𝐹‘𝑘)) ∈ 𝐸) |
8 | eleq1 2828 | . . . . . . . . 9 ⊢ ({(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = ((iEdg‘𝐺)‘(𝐹‘𝑘)) → ({(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 ↔ ((iEdg‘𝐺)‘(𝐹‘𝑘)) ∈ 𝐸)) | |
9 | 8 | eqcoms 2748 | . . . . . . . 8 ⊢ (((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} → ({(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 ↔ ((iEdg‘𝐺)‘(𝐹‘𝑘)) ∈ 𝐸)) |
10 | 7, 9 | syl5ibrcom 246 | . . . . . . 7 ⊢ (((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸)) |
11 | 10 | ralimdva 3105 | . . . . . 6 ⊢ ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → (∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸)) |
12 | 11 | impancom 452 | . . . . 5 ⊢ ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → (𝐺 ∈ UPGraph → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸)) |
13 | 12 | 3adant2 1130 | . . . 4 ⊢ ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → (𝐺 ∈ UPGraph → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸)) |
14 | 13 | com12 32 | . . 3 ⊢ (𝐺 ∈ UPGraph → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸)) |
15 | 3, 14 | sylbid 239 | . 2 ⊢ (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸)) |
16 | 15 | imp 407 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ∀wral 3066 {cpr 4569 class class class wbr 5079 dom cdm 5589 ⟶wf 6427 ‘cfv 6431 (class class class)co 7269 0cc0 10864 1c1 10865 + caddc 10867 ...cfz 13230 ..^cfzo 13373 ♯chash 14034 Word cword 14207 Vtxcvtx 27356 iEdgciedg 27357 Edgcedg 27407 UPGraphcupgr 27440 Walkscwlks 27953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10920 ax-resscn 10921 ax-1cn 10922 ax-icn 10923 ax-addcl 10924 ax-addrcl 10925 ax-mulcl 10926 ax-mulrcl 10927 ax-mulcom 10928 ax-addass 10929 ax-mulass 10930 ax-distr 10931 ax-i2m1 10932 ax-1ne0 10933 ax-1rid 10934 ax-rnegex 10935 ax-rrecex 10936 ax-cnre 10937 ax-pre-lttri 10938 ax-pre-lttrn 10939 ax-pre-ltadd 10940 ax-pre-mulgt0 10941 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7702 df-1st 7818 df-2nd 7819 df-frecs 8082 df-wrecs 8113 df-recs 8187 df-rdg 8226 df-1o 8282 df-2o 8283 df-oadd 8286 df-er 8473 df-map 8592 df-pm 8593 df-en 8709 df-dom 8710 df-sdom 8711 df-fin 8712 df-dju 9652 df-card 9690 df-pnf 11004 df-mnf 11005 df-xr 11006 df-ltxr 11007 df-le 11008 df-sub 11199 df-neg 11200 df-nn 11966 df-2 12028 df-n0 12226 df-xnn0 12298 df-z 12312 df-uz 12574 df-fz 13231 df-fzo 13374 df-hash 14035 df-word 14208 df-edg 27408 df-uhgr 27418 df-upgr 27442 df-wlks 27956 |
This theorem is referenced by: umgrwlknloop 28005 wlknewwlksn 28240 upgr3v3e3cycl 28532 upgr4cycl4dv4e 28537 |
Copyright terms: Public domain | W3C validator |