MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1le2 Structured version   Visualization version   GIF version

Theorem 1le2 12420
Description: 1 is less than or equal to 2. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
1le2 1 ≤ 2

Proof of Theorem 1le2
StepHypRef Expression
1 1re 11213 . 2 1 ∈ ℝ
2 2re 12285 . 2 2 ∈ ℝ
3 1lt2 12382 . 2 1 < 2
41, 2, 3ltleii 11336 1 1 ≤ 2
Colors of variables: wff setvar class
Syntax hints:   class class class wbr 5148  1c1 11110  cle 11248  2c2 12266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-2 12274
This theorem is referenced by:  eluz2nn  12867  2eluzge1  12877  faclbnd4lem1  14252  wrdl2exs2  14896  climcndslem1  15794  climcndslem2  15795  ef01bndlem  16126  bitsmod  16376  abvtrivd  20447  aaliou3lem2  25855  aaliou3lem8  25857  cos0pilt1  26040  bcmono  26777  gausslemma2dlem0c  26858  gausslemma2dlem1a  26865  chpchtlim  26979  pntibndlem3  27092  axlowdimlem3  28199  axlowdimlem6  28202  axlowdimlem16  28212  axlowdimlem17  28213  usgr2pthlem  29017  wwlksm1edg  29132  clwlkclwwlklem2fv1  29245  lmat22e12  32794  lmat22e21  32795  nexple  33002  ballotlem2  33482  signstfveq0  33583  aks4d1p1p4  40931  aks4d1p1  40936  2np3bcnp1  40955  2ap1caineq  40956  lhe4.4ex1a  43078  salexct3  45048  salgencntex  45049  salgensscntex  45050  p1lep2  45998  fmtnoge3  46188  2pwp1prm  46247  ackval42  47372
  Copyright terms: Public domain W3C validator