| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1le2 | Structured version Visualization version GIF version | ||
| Description: 1 is less than or equal to 2. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 1le2 | ⊢ 1 ≤ 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11235 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | 2re 12314 | . 2 ⊢ 2 ∈ ℝ | |
| 3 | 1lt2 12411 | . 2 ⊢ 1 < 2 | |
| 4 | 1, 2, 3 | ltleii 11358 | 1 ⊢ 1 ≤ 2 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5119 1c1 11130 ≤ cle 11270 2c2 12295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-2 12303 |
| This theorem is referenced by: eluz2nn 12898 2eluzge1 12910 faclbnd4lem1 14311 wrdl2exs2 14965 climcndslem1 15865 climcndslem2 15866 ef01bndlem 16202 bitsmod 16455 abvtrivd 20792 aaliou3lem2 26303 aaliou3lem8 26305 cos0pilt1 26493 bcmono 27240 gausslemma2dlem0c 27321 gausslemma2dlem1a 27328 chpchtlim 27442 pntibndlem3 27555 axlowdimlem3 28923 axlowdimlem6 28926 axlowdimlem16 28936 axlowdimlem17 28937 usgr2pthlem 29745 wwlksm1edg 29863 clwlkclwwlklem2fv1 29976 nexple 32823 lmat22e12 33850 lmat22e21 33851 ballotlem2 34521 signstfveq0 34609 aks4d1p1p4 42084 aks4d1p1 42089 2np3bcnp1 42157 2ap1caineq 42158 aks6d1c7lem1 42193 lhe4.4ex1a 44353 salexct3 46371 salgencntex 46372 salgensscntex 46373 p1lep2 47329 fmtnoge3 47544 2pwp1prm 47603 ackval42 48676 |
| Copyright terms: Public domain | W3C validator |