| Mathbox for Zhi Wang | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xpcfucco3 | Structured version Visualization version GIF version | ||
| Description: Value of composition in the binary product of categories of functors; expressed explicitly. (Contributed by Zhi Wang, 1-Oct-2025.) | 
| Ref | Expression | 
|---|---|
| xpcfuchom2.t | ⊢ 𝑇 = ((𝐵 FuncCat 𝐶) ×c (𝐷 FuncCat 𝐸)) | 
| xpcfucco2.o | ⊢ 𝑂 = (comp‘𝑇) | 
| xpcfucco2.f | ⊢ (𝜑 → 𝐹 ∈ (𝑀(𝐵 Nat 𝐶)𝑃)) | 
| xpcfucco2.g | ⊢ (𝜑 → 𝐺 ∈ (𝑁(𝐷 Nat 𝐸)𝑄)) | 
| xpcfucco2.k | ⊢ (𝜑 → 𝐾 ∈ (𝑃(𝐵 Nat 𝐶)𝑅)) | 
| xpcfucco2.l | ⊢ (𝜑 → 𝐿 ∈ (𝑄(𝐷 Nat 𝐸)𝑆)) | 
| xpcfucco3.x | ⊢ 𝑋 = (Base‘𝐵) | 
| xpcfucco3.y | ⊢ 𝑌 = (Base‘𝐷) | 
| xpcfucco3.o1 | ⊢ · = (comp‘𝐶) | 
| xpcfucco3.o2 | ⊢ ∙ = (comp‘𝐸) | 
| Ref | Expression | 
|---|---|
| xpcfucco3 | ⊢ (𝜑 → (〈𝐾, 𝐿〉(〈〈𝑀, 𝑁〉, 〈𝑃, 𝑄〉〉𝑂〈𝑅, 𝑆〉)〈𝐹, 𝐺〉) = 〈(𝑥 ∈ 𝑋 ↦ ((𝐾‘𝑥)(〈((1st ‘𝑀)‘𝑥), ((1st ‘𝑃)‘𝑥)〉 · ((1st ‘𝑅)‘𝑥))(𝐹‘𝑥))), (𝑦 ∈ 𝑌 ↦ ((𝐿‘𝑦)(〈((1st ‘𝑁)‘𝑦), ((1st ‘𝑄)‘𝑦)〉 ∙ ((1st ‘𝑆)‘𝑦))(𝐺‘𝑦)))〉) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xpcfuchom2.t | . . 3 ⊢ 𝑇 = ((𝐵 FuncCat 𝐶) ×c (𝐷 FuncCat 𝐸)) | |
| 2 | xpcfucco2.o | . . 3 ⊢ 𝑂 = (comp‘𝑇) | |
| 3 | xpcfucco2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑀(𝐵 Nat 𝐶)𝑃)) | |
| 4 | xpcfucco2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑁(𝐷 Nat 𝐸)𝑄)) | |
| 5 | xpcfucco2.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (𝑃(𝐵 Nat 𝐶)𝑅)) | |
| 6 | xpcfucco2.l | . . 3 ⊢ (𝜑 → 𝐿 ∈ (𝑄(𝐷 Nat 𝐸)𝑆)) | |
| 7 | 1, 2, 3, 4, 5, 6 | xpcfucco2 48909 | . 2 ⊢ (𝜑 → (〈𝐾, 𝐿〉(〈〈𝑀, 𝑁〉, 〈𝑃, 𝑄〉〉𝑂〈𝑅, 𝑆〉)〈𝐹, 𝐺〉) = 〈(𝐾(〈𝑀, 𝑃〉(comp‘(𝐵 FuncCat 𝐶))𝑅)𝐹), (𝐿(〈𝑁, 𝑄〉(comp‘(𝐷 FuncCat 𝐸))𝑆)𝐺)〉) | 
| 8 | eqid 2734 | . . . 4 ⊢ (𝐵 FuncCat 𝐶) = (𝐵 FuncCat 𝐶) | |
| 9 | eqid 2734 | . . . 4 ⊢ (𝐵 Nat 𝐶) = (𝐵 Nat 𝐶) | |
| 10 | xpcfucco3.x | . . . 4 ⊢ 𝑋 = (Base‘𝐵) | |
| 11 | xpcfucco3.o1 | . . . 4 ⊢ · = (comp‘𝐶) | |
| 12 | eqid 2734 | . . . 4 ⊢ (comp‘(𝐵 FuncCat 𝐶)) = (comp‘(𝐵 FuncCat 𝐶)) | |
| 13 | 8, 9, 10, 11, 12, 3, 5 | fucco 17980 | . . 3 ⊢ (𝜑 → (𝐾(〈𝑀, 𝑃〉(comp‘(𝐵 FuncCat 𝐶))𝑅)𝐹) = (𝑥 ∈ 𝑋 ↦ ((𝐾‘𝑥)(〈((1st ‘𝑀)‘𝑥), ((1st ‘𝑃)‘𝑥)〉 · ((1st ‘𝑅)‘𝑥))(𝐹‘𝑥)))) | 
| 14 | eqid 2734 | . . . 4 ⊢ (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸) | |
| 15 | eqid 2734 | . . . 4 ⊢ (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸) | |
| 16 | xpcfucco3.y | . . . 4 ⊢ 𝑌 = (Base‘𝐷) | |
| 17 | xpcfucco3.o2 | . . . 4 ⊢ ∙ = (comp‘𝐸) | |
| 18 | eqid 2734 | . . . 4 ⊢ (comp‘(𝐷 FuncCat 𝐸)) = (comp‘(𝐷 FuncCat 𝐸)) | |
| 19 | 14, 15, 16, 17, 18, 4, 6 | fucco 17980 | . . 3 ⊢ (𝜑 → (𝐿(〈𝑁, 𝑄〉(comp‘(𝐷 FuncCat 𝐸))𝑆)𝐺) = (𝑦 ∈ 𝑌 ↦ ((𝐿‘𝑦)(〈((1st ‘𝑁)‘𝑦), ((1st ‘𝑄)‘𝑦)〉 ∙ ((1st ‘𝑆)‘𝑦))(𝐺‘𝑦)))) | 
| 20 | 13, 19 | opeq12d 4861 | . 2 ⊢ (𝜑 → 〈(𝐾(〈𝑀, 𝑃〉(comp‘(𝐵 FuncCat 𝐶))𝑅)𝐹), (𝐿(〈𝑁, 𝑄〉(comp‘(𝐷 FuncCat 𝐸))𝑆)𝐺)〉 = 〈(𝑥 ∈ 𝑋 ↦ ((𝐾‘𝑥)(〈((1st ‘𝑀)‘𝑥), ((1st ‘𝑃)‘𝑥)〉 · ((1st ‘𝑅)‘𝑥))(𝐹‘𝑥))), (𝑦 ∈ 𝑌 ↦ ((𝐿‘𝑦)(〈((1st ‘𝑁)‘𝑦), ((1st ‘𝑄)‘𝑦)〉 ∙ ((1st ‘𝑆)‘𝑦))(𝐺‘𝑦)))〉) | 
| 21 | 7, 20 | eqtrd 2769 | 1 ⊢ (𝜑 → (〈𝐾, 𝐿〉(〈〈𝑀, 𝑁〉, 〈𝑃, 𝑄〉〉𝑂〈𝑅, 𝑆〉)〈𝐹, 𝐺〉) = 〈(𝑥 ∈ 𝑋 ↦ ((𝐾‘𝑥)(〈((1st ‘𝑀)‘𝑥), ((1st ‘𝑃)‘𝑥)〉 · ((1st ‘𝑅)‘𝑥))(𝐹‘𝑥))), (𝑦 ∈ 𝑌 ↦ ((𝐿‘𝑦)(〈((1st ‘𝑁)‘𝑦), ((1st ‘𝑄)‘𝑦)〉 ∙ ((1st ‘𝑆)‘𝑦))(𝐺‘𝑦)))〉) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 〈cop 4612 ↦ cmpt 5205 ‘cfv 6540 (class class class)co 7412 1st c1st 7993 Basecbs 17228 compcco 17284 Nat cnat 17959 FuncCat cfuc 17960 ×c cxpc 18182 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8726 df-ixp 8919 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-nn 12248 df-2 12310 df-3 12311 df-4 12312 df-5 12313 df-6 12314 df-7 12315 df-8 12316 df-9 12317 df-n0 12509 df-z 12596 df-dec 12716 df-uz 12860 df-fz 13529 df-struct 17165 df-slot 17200 df-ndx 17212 df-base 17229 df-hom 17296 df-cco 17297 df-func 17873 df-nat 17961 df-fuc 17962 df-xpc 18186 | 
| This theorem is referenced by: fucocolem2 49001 | 
| Copyright terms: Public domain | W3C validator |