Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xpcfucco3 Structured version   Visualization version   GIF version

Theorem xpcfucco3 49159
Description: Value of composition in the binary product of categories of functors; expressed explicitly. (Contributed by Zhi Wang, 1-Oct-2025.)
Hypotheses
Ref Expression
xpcfuchom2.t 𝑇 = ((𝐵 FuncCat 𝐶) ×c (𝐷 FuncCat 𝐸))
xpcfucco2.o 𝑂 = (comp‘𝑇)
xpcfucco2.f (𝜑𝐹 ∈ (𝑀(𝐵 Nat 𝐶)𝑃))
xpcfucco2.g (𝜑𝐺 ∈ (𝑁(𝐷 Nat 𝐸)𝑄))
xpcfucco2.k (𝜑𝐾 ∈ (𝑃(𝐵 Nat 𝐶)𝑅))
xpcfucco2.l (𝜑𝐿 ∈ (𝑄(𝐷 Nat 𝐸)𝑆))
xpcfucco3.x 𝑋 = (Base‘𝐵)
xpcfucco3.y 𝑌 = (Base‘𝐷)
xpcfucco3.o1 · = (comp‘𝐶)
xpcfucco3.o2 = (comp‘𝐸)
Assertion
Ref Expression
xpcfucco3 (𝜑 → (⟨𝐾, 𝐿⟩(⟨⟨𝑀, 𝑁⟩, ⟨𝑃, 𝑄⟩⟩𝑂𝑅, 𝑆⟩)⟨𝐹, 𝐺⟩) = ⟨(𝑥𝑋 ↦ ((𝐾𝑥)(⟨((1st𝑀)‘𝑥), ((1st𝑃)‘𝑥)⟩ · ((1st𝑅)‘𝑥))(𝐹𝑥))), (𝑦𝑌 ↦ ((𝐿𝑦)(⟨((1st𝑁)‘𝑦), ((1st𝑄)‘𝑦)⟩ ((1st𝑆)‘𝑦))(𝐺𝑦)))⟩)
Distinct variable groups:   𝑥, ·   𝑦,   𝑥,𝐵   𝑥,𝐶   𝑦,𝐷   𝑦,𝐸   𝑥,𝐹   𝑦,𝐺   𝑥,𝐾   𝑦,𝐿   𝑥,𝑀   𝑦,𝑁   𝑥,𝑃   𝑦,𝑄   𝑥,𝑅   𝑦,𝑆   𝑥,𝑋   𝑦,𝑌   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐵(𝑦)   𝐶(𝑦)   𝐷(𝑥)   𝑃(𝑦)   𝑄(𝑥)   𝑅(𝑦)   𝑆(𝑥)   (𝑥)   𝑇(𝑥,𝑦)   · (𝑦)   𝐸(𝑥)   𝐹(𝑦)   𝐺(𝑥)   𝐾(𝑦)   𝐿(𝑥)   𝑀(𝑦)   𝑁(𝑥)   𝑂(𝑥,𝑦)   𝑋(𝑦)   𝑌(𝑥)

Proof of Theorem xpcfucco3
StepHypRef Expression
1 xpcfuchom2.t . . 3 𝑇 = ((𝐵 FuncCat 𝐶) ×c (𝐷 FuncCat 𝐸))
2 xpcfucco2.o . . 3 𝑂 = (comp‘𝑇)
3 xpcfucco2.f . . 3 (𝜑𝐹 ∈ (𝑀(𝐵 Nat 𝐶)𝑃))
4 xpcfucco2.g . . 3 (𝜑𝐺 ∈ (𝑁(𝐷 Nat 𝐸)𝑄))
5 xpcfucco2.k . . 3 (𝜑𝐾 ∈ (𝑃(𝐵 Nat 𝐶)𝑅))
6 xpcfucco2.l . . 3 (𝜑𝐿 ∈ (𝑄(𝐷 Nat 𝐸)𝑆))
71, 2, 3, 4, 5, 6xpcfucco2 49157 . 2 (𝜑 → (⟨𝐾, 𝐿⟩(⟨⟨𝑀, 𝑁⟩, ⟨𝑃, 𝑄⟩⟩𝑂𝑅, 𝑆⟩)⟨𝐹, 𝐺⟩) = ⟨(𝐾(⟨𝑀, 𝑃⟩(comp‘(𝐵 FuncCat 𝐶))𝑅)𝐹), (𝐿(⟨𝑁, 𝑄⟩(comp‘(𝐷 FuncCat 𝐸))𝑆)𝐺)⟩)
8 eqid 2730 . . . 4 (𝐵 FuncCat 𝐶) = (𝐵 FuncCat 𝐶)
9 eqid 2730 . . . 4 (𝐵 Nat 𝐶) = (𝐵 Nat 𝐶)
10 xpcfucco3.x . . . 4 𝑋 = (Base‘𝐵)
11 xpcfucco3.o1 . . . 4 · = (comp‘𝐶)
12 eqid 2730 . . . 4 (comp‘(𝐵 FuncCat 𝐶)) = (comp‘(𝐵 FuncCat 𝐶))
138, 9, 10, 11, 12, 3, 5fucco 17933 . . 3 (𝜑 → (𝐾(⟨𝑀, 𝑃⟩(comp‘(𝐵 FuncCat 𝐶))𝑅)𝐹) = (𝑥𝑋 ↦ ((𝐾𝑥)(⟨((1st𝑀)‘𝑥), ((1st𝑃)‘𝑥)⟩ · ((1st𝑅)‘𝑥))(𝐹𝑥))))
14 eqid 2730 . . . 4 (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸)
15 eqid 2730 . . . 4 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
16 xpcfucco3.y . . . 4 𝑌 = (Base‘𝐷)
17 xpcfucco3.o2 . . . 4 = (comp‘𝐸)
18 eqid 2730 . . . 4 (comp‘(𝐷 FuncCat 𝐸)) = (comp‘(𝐷 FuncCat 𝐸))
1914, 15, 16, 17, 18, 4, 6fucco 17933 . . 3 (𝜑 → (𝐿(⟨𝑁, 𝑄⟩(comp‘(𝐷 FuncCat 𝐸))𝑆)𝐺) = (𝑦𝑌 ↦ ((𝐿𝑦)(⟨((1st𝑁)‘𝑦), ((1st𝑄)‘𝑦)⟩ ((1st𝑆)‘𝑦))(𝐺𝑦))))
2013, 19opeq12d 4853 . 2 (𝜑 → ⟨(𝐾(⟨𝑀, 𝑃⟩(comp‘(𝐵 FuncCat 𝐶))𝑅)𝐹), (𝐿(⟨𝑁, 𝑄⟩(comp‘(𝐷 FuncCat 𝐸))𝑆)𝐺)⟩ = ⟨(𝑥𝑋 ↦ ((𝐾𝑥)(⟨((1st𝑀)‘𝑥), ((1st𝑃)‘𝑥)⟩ · ((1st𝑅)‘𝑥))(𝐹𝑥))), (𝑦𝑌 ↦ ((𝐿𝑦)(⟨((1st𝑁)‘𝑦), ((1st𝑄)‘𝑦)⟩ ((1st𝑆)‘𝑦))(𝐺𝑦)))⟩)
217, 20eqtrd 2765 1 (𝜑 → (⟨𝐾, 𝐿⟩(⟨⟨𝑀, 𝑁⟩, ⟨𝑃, 𝑄⟩⟩𝑂𝑅, 𝑆⟩)⟨𝐹, 𝐺⟩) = ⟨(𝑥𝑋 ↦ ((𝐾𝑥)(⟨((1st𝑀)‘𝑥), ((1st𝑃)‘𝑥)⟩ · ((1st𝑅)‘𝑥))(𝐹𝑥))), (𝑦𝑌 ↦ ((𝐿𝑦)(⟨((1st𝑁)‘𝑦), ((1st𝑄)‘𝑦)⟩ ((1st𝑆)‘𝑦))(𝐺𝑦)))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4603  cmpt 5196  cfv 6519  (class class class)co 7394  1st c1st 7975  Basecbs 17185  compcco 17238   Nat cnat 17912   FuncCat cfuc 17913   ×c cxpc 18135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-tp 4602  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-1st 7977  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-er 8682  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-nn 12198  df-2 12260  df-3 12261  df-4 12262  df-5 12263  df-6 12264  df-7 12265  df-8 12266  df-9 12267  df-n0 12459  df-z 12546  df-dec 12666  df-uz 12810  df-fz 13482  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17186  df-hom 17250  df-cco 17251  df-func 17826  df-nat 17914  df-fuc 17915  df-xpc 18139
This theorem is referenced by:  fucocolem2  49249
  Copyright terms: Public domain W3C validator