| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xpcfucco2 | Structured version Visualization version GIF version | ||
| Description: Value of composition in the binary product of categories of functors. (Contributed by Zhi Wang, 1-Oct-2025.) |
| Ref | Expression |
|---|---|
| xpcfuchom2.t | ⊢ 𝑇 = ((𝐵 FuncCat 𝐶) ×c (𝐷 FuncCat 𝐸)) |
| xpcfucco2.o | ⊢ 𝑂 = (comp‘𝑇) |
| xpcfucco2.f | ⊢ (𝜑 → 𝐹 ∈ (𝑀(𝐵 Nat 𝐶)𝑃)) |
| xpcfucco2.g | ⊢ (𝜑 → 𝐺 ∈ (𝑁(𝐷 Nat 𝐸)𝑄)) |
| xpcfucco2.k | ⊢ (𝜑 → 𝐾 ∈ (𝑃(𝐵 Nat 𝐶)𝑅)) |
| xpcfucco2.l | ⊢ (𝜑 → 𝐿 ∈ (𝑄(𝐷 Nat 𝐸)𝑆)) |
| Ref | Expression |
|---|---|
| xpcfucco2 | ⊢ (𝜑 → (〈𝐾, 𝐿〉(〈〈𝑀, 𝑁〉, 〈𝑃, 𝑄〉〉𝑂〈𝑅, 𝑆〉)〈𝐹, 𝐺〉) = 〈(𝐾(〈𝑀, 𝑃〉(comp‘(𝐵 FuncCat 𝐶))𝑅)𝐹), (𝐿(〈𝑁, 𝑄〉(comp‘(𝐷 FuncCat 𝐸))𝑆)𝐺)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpcfuchom2.t | . 2 ⊢ 𝑇 = ((𝐵 FuncCat 𝐶) ×c (𝐷 FuncCat 𝐸)) | |
| 2 | eqid 2730 | . . 3 ⊢ (𝐵 FuncCat 𝐶) = (𝐵 FuncCat 𝐶) | |
| 3 | 2 | fucbas 17931 | . 2 ⊢ (𝐵 Func 𝐶) = (Base‘(𝐵 FuncCat 𝐶)) |
| 4 | eqid 2730 | . . 3 ⊢ (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸) | |
| 5 | 4 | fucbas 17931 | . 2 ⊢ (𝐷 Func 𝐸) = (Base‘(𝐷 FuncCat 𝐸)) |
| 6 | eqid 2730 | . . 3 ⊢ (𝐵 Nat 𝐶) = (𝐵 Nat 𝐶) | |
| 7 | 2, 6 | fuchom 17932 | . 2 ⊢ (𝐵 Nat 𝐶) = (Hom ‘(𝐵 FuncCat 𝐶)) |
| 8 | eqid 2730 | . . 3 ⊢ (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸) | |
| 9 | 4, 8 | fuchom 17932 | . 2 ⊢ (𝐷 Nat 𝐸) = (Hom ‘(𝐷 FuncCat 𝐸)) |
| 10 | xpcfucco2.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑀(𝐵 Nat 𝐶)𝑃)) | |
| 11 | 6 | natrcl 17921 | . . . 4 ⊢ (𝐹 ∈ (𝑀(𝐵 Nat 𝐶)𝑃) → (𝑀 ∈ (𝐵 Func 𝐶) ∧ 𝑃 ∈ (𝐵 Func 𝐶))) |
| 12 | 10, 11 | syl 17 | . . 3 ⊢ (𝜑 → (𝑀 ∈ (𝐵 Func 𝐶) ∧ 𝑃 ∈ (𝐵 Func 𝐶))) |
| 13 | 12 | simpld 494 | . 2 ⊢ (𝜑 → 𝑀 ∈ (𝐵 Func 𝐶)) |
| 14 | xpcfucco2.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝑁(𝐷 Nat 𝐸)𝑄)) | |
| 15 | 8 | natrcl 17921 | . . . 4 ⊢ (𝐺 ∈ (𝑁(𝐷 Nat 𝐸)𝑄) → (𝑁 ∈ (𝐷 Func 𝐸) ∧ 𝑄 ∈ (𝐷 Func 𝐸))) |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ (𝜑 → (𝑁 ∈ (𝐷 Func 𝐸) ∧ 𝑄 ∈ (𝐷 Func 𝐸))) |
| 17 | 16 | simpld 494 | . 2 ⊢ (𝜑 → 𝑁 ∈ (𝐷 Func 𝐸)) |
| 18 | 12 | simprd 495 | . 2 ⊢ (𝜑 → 𝑃 ∈ (𝐵 Func 𝐶)) |
| 19 | 16 | simprd 495 | . 2 ⊢ (𝜑 → 𝑄 ∈ (𝐷 Func 𝐸)) |
| 20 | eqid 2730 | . 2 ⊢ (comp‘(𝐵 FuncCat 𝐶)) = (comp‘(𝐵 FuncCat 𝐶)) | |
| 21 | eqid 2730 | . 2 ⊢ (comp‘(𝐷 FuncCat 𝐸)) = (comp‘(𝐷 FuncCat 𝐸)) | |
| 22 | xpcfucco2.o | . 2 ⊢ 𝑂 = (comp‘𝑇) | |
| 23 | xpcfucco2.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (𝑃(𝐵 Nat 𝐶)𝑅)) | |
| 24 | 6 | natrcl 17921 | . . . 4 ⊢ (𝐾 ∈ (𝑃(𝐵 Nat 𝐶)𝑅) → (𝑃 ∈ (𝐵 Func 𝐶) ∧ 𝑅 ∈ (𝐵 Func 𝐶))) |
| 25 | 23, 24 | syl 17 | . . 3 ⊢ (𝜑 → (𝑃 ∈ (𝐵 Func 𝐶) ∧ 𝑅 ∈ (𝐵 Func 𝐶))) |
| 26 | 25 | simprd 495 | . 2 ⊢ (𝜑 → 𝑅 ∈ (𝐵 Func 𝐶)) |
| 27 | xpcfucco2.l | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (𝑄(𝐷 Nat 𝐸)𝑆)) | |
| 28 | 8 | natrcl 17921 | . . . 4 ⊢ (𝐿 ∈ (𝑄(𝐷 Nat 𝐸)𝑆) → (𝑄 ∈ (𝐷 Func 𝐸) ∧ 𝑆 ∈ (𝐷 Func 𝐸))) |
| 29 | 27, 28 | syl 17 | . . 3 ⊢ (𝜑 → (𝑄 ∈ (𝐷 Func 𝐸) ∧ 𝑆 ∈ (𝐷 Func 𝐸))) |
| 30 | 29 | simprd 495 | . 2 ⊢ (𝜑 → 𝑆 ∈ (𝐷 Func 𝐸)) |
| 31 | 1, 3, 5, 7, 9, 13, 17, 18, 19, 20, 21, 22, 26, 30, 10, 14, 23, 27 | xpcco2 18154 | 1 ⊢ (𝜑 → (〈𝐾, 𝐿〉(〈〈𝑀, 𝑁〉, 〈𝑃, 𝑄〉〉𝑂〈𝑅, 𝑆〉)〈𝐹, 𝐺〉) = 〈(𝐾(〈𝑀, 𝑃〉(comp‘(𝐵 FuncCat 𝐶))𝑅)𝐹), (𝐿(〈𝑁, 𝑄〉(comp‘(𝐷 FuncCat 𝐸))𝑆)𝐺)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4603 ‘cfv 6519 (class class class)co 7394 compcco 17238 Func cfunc 17822 Nat cnat 17912 FuncCat cfuc 17913 ×c cxpc 18135 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-er 8682 df-ixp 8875 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-9 12267 df-n0 12459 df-z 12546 df-dec 12666 df-uz 12810 df-fz 13482 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17186 df-hom 17250 df-cco 17251 df-func 17826 df-nat 17914 df-fuc 17915 df-xpc 18139 |
| This theorem is referenced by: xpcfuccocl 49158 xpcfucco3 49159 |
| Copyright terms: Public domain | W3C validator |