![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > zplusmodne | Structured version Visualization version GIF version |
Description: A nonnegative integer is not itself plus a positive integer modulo an integer greater than 1 and the positive integer. (Contributed by AV, 6-Sep-2025.) |
Ref | Expression |
---|---|
zplusmodne | ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐴 + 𝐾) mod 𝑁) ≠ (𝐴 mod 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2nn 12956 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐾 ∈ (1..^𝑁)) → 𝑁 ∈ ℕ) |
3 | simp2 1137 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐾 ∈ (1..^𝑁)) → 𝐴 ∈ ℤ) | |
4 | elfzoelz 13727 | . . . 4 ⊢ (𝐾 ∈ (1..^𝑁) → 𝐾 ∈ ℤ) | |
5 | 4 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ∈ ℤ) |
6 | 3, 5 | zaddcld 12758 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐾 ∈ (1..^𝑁)) → (𝐴 + 𝐾) ∈ ℤ) |
7 | 3 | zcnd 12755 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐾 ∈ (1..^𝑁)) → 𝐴 ∈ ℂ) |
8 | 4 | zcnd 12755 | . . . . 5 ⊢ (𝐾 ∈ (1..^𝑁) → 𝐾 ∈ ℂ) |
9 | 8 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ∈ ℂ) |
10 | 7, 9 | pncan2d 11654 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐴 + 𝐾) − 𝐴) = 𝐾) |
11 | elfzo1 13780 | . . . . . . 7 ⊢ (𝐾 ∈ (1..^𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)) | |
12 | nnge1 12326 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℕ → 1 ≤ 𝐾) | |
13 | 12 | anim1i 614 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℕ ∧ 𝐾 < 𝑁) → (1 ≤ 𝐾 ∧ 𝐾 < 𝑁)) |
14 | 13 | 3adant2 1131 | . . . . . . 7 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → (1 ≤ 𝐾 ∧ 𝐾 < 𝑁)) |
15 | 11, 14 | sylbi 217 | . . . . . 6 ⊢ (𝐾 ∈ (1..^𝑁) → (1 ≤ 𝐾 ∧ 𝐾 < 𝑁)) |
16 | 15 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐾 ∈ (1..^𝑁)) → (1 ≤ 𝐾 ∧ 𝐾 < 𝑁)) |
17 | 16 | adantr 480 | . . . 4 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐾 ∈ (1..^𝑁)) ∧ ((𝐴 + 𝐾) − 𝐴) = 𝐾) → (1 ≤ 𝐾 ∧ 𝐾 < 𝑁)) |
18 | breq2 5171 | . . . . . 6 ⊢ (((𝐴 + 𝐾) − 𝐴) = 𝐾 → (1 ≤ ((𝐴 + 𝐾) − 𝐴) ↔ 1 ≤ 𝐾)) | |
19 | 18 | adantl 481 | . . . . 5 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐾 ∈ (1..^𝑁)) ∧ ((𝐴 + 𝐾) − 𝐴) = 𝐾) → (1 ≤ ((𝐴 + 𝐾) − 𝐴) ↔ 1 ≤ 𝐾)) |
20 | breq1 5170 | . . . . . 6 ⊢ (((𝐴 + 𝐾) − 𝐴) = 𝐾 → (((𝐴 + 𝐾) − 𝐴) < 𝑁 ↔ 𝐾 < 𝑁)) | |
21 | 20 | adantl 481 | . . . . 5 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐾 ∈ (1..^𝑁)) ∧ ((𝐴 + 𝐾) − 𝐴) = 𝐾) → (((𝐴 + 𝐾) − 𝐴) < 𝑁 ↔ 𝐾 < 𝑁)) |
22 | 19, 21 | anbi12d 631 | . . . 4 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐾 ∈ (1..^𝑁)) ∧ ((𝐴 + 𝐾) − 𝐴) = 𝐾) → ((1 ≤ ((𝐴 + 𝐾) − 𝐴) ∧ ((𝐴 + 𝐾) − 𝐴) < 𝑁) ↔ (1 ≤ 𝐾 ∧ 𝐾 < 𝑁))) |
23 | 17, 22 | mpbird 257 | . . 3 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐾 ∈ (1..^𝑁)) ∧ ((𝐴 + 𝐾) − 𝐴) = 𝐾) → (1 ≤ ((𝐴 + 𝐾) − 𝐴) ∧ ((𝐴 + 𝐾) − 𝐴) < 𝑁)) |
24 | 10, 23 | mpdan 686 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐾 ∈ (1..^𝑁)) → (1 ≤ ((𝐴 + 𝐾) − 𝐴) ∧ ((𝐴 + 𝐾) − 𝐴) < 𝑁)) |
25 | difltmodne 47265 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 + 𝐾) ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (1 ≤ ((𝐴 + 𝐾) − 𝐴) ∧ ((𝐴 + 𝐾) − 𝐴) < 𝑁)) → ((𝐴 + 𝐾) mod 𝑁) ≠ (𝐴 mod 𝑁)) | |
26 | 2, 6, 3, 24, 25 | syl121anc 1375 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐴 + 𝐾) mod 𝑁) ≠ (𝐴 mod 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 class class class wbr 5167 ‘cfv 6576 (class class class)co 7451 ℂcc 11185 1c1 11188 + caddc 11190 < clt 11327 ≤ cle 11328 − cmin 11524 ℕcn 12298 2c2 12353 ℤcz 12645 ℤ≥cuz 12910 ..^cfzo 13722 mod cmo 13936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5318 ax-nul 5325 ax-pow 5384 ax-pr 5448 ax-un 7773 ax-cnex 11243 ax-resscn 11244 ax-1cn 11245 ax-icn 11246 ax-addcl 11247 ax-addrcl 11248 ax-mulcl 11249 ax-mulrcl 11250 ax-mulcom 11251 ax-addass 11252 ax-mulass 11253 ax-distr 11254 ax-i2m1 11255 ax-1ne0 11256 ax-1rid 11257 ax-rnegex 11258 ax-rrecex 11259 ax-cnre 11260 ax-pre-lttri 11261 ax-pre-lttrn 11262 ax-pre-ltadd 11263 ax-pre-mulgt0 11264 ax-pre-sup 11265 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4933 df-iun 5018 df-br 5168 df-opab 5230 df-mpt 5251 df-tr 5285 df-id 5594 df-eprel 5600 df-po 5608 df-so 5609 df-fr 5653 df-we 5655 df-xp 5707 df-rel 5708 df-cnv 5709 df-co 5710 df-dm 5711 df-rn 5712 df-res 5713 df-ima 5714 df-pred 6335 df-ord 6401 df-on 6402 df-lim 6403 df-suc 6404 df-iota 6528 df-fun 6578 df-fn 6579 df-f 6580 df-f1 6581 df-fo 6582 df-f1o 6583 df-fv 6584 df-riota 7407 df-ov 7454 df-oprab 7455 df-mpo 7456 df-om 7907 df-1st 8033 df-2nd 8034 df-frecs 8325 df-wrecs 8356 df-recs 8430 df-rdg 8469 df-er 8766 df-en 9007 df-dom 9008 df-sdom 9009 df-sup 9514 df-inf 9515 df-pnf 11329 df-mnf 11330 df-xr 11331 df-ltxr 11332 df-le 11333 df-sub 11526 df-neg 11527 df-div 11953 df-nn 12299 df-2 12361 df-n0 12559 df-z 12646 df-uz 12911 df-rp 13067 df-fz 13579 df-fzo 13723 df-fl 13859 df-mod 13937 df-dvds 16320 |
This theorem is referenced by: addmodne 47267 zp1modne 47269 gpg5nbgrvtx13starlem2 47915 |
Copyright terms: Public domain | W3C validator |