| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zplusmodne | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer is not itself plus a positive integer modulo an integer greater than 1 and the positive integer. (Contributed by AV, 6-Sep-2025.) |
| Ref | Expression |
|---|---|
| zplusmodne | ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐴 + 𝐾) mod 𝑁) ≠ (𝐴 mod 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2nn 12890 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐾 ∈ (1..^𝑁)) → 𝑁 ∈ ℕ) |
| 3 | simp2 1137 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐾 ∈ (1..^𝑁)) → 𝐴 ∈ ℤ) | |
| 4 | elfzoelz 13665 | . . . 4 ⊢ (𝐾 ∈ (1..^𝑁) → 𝐾 ∈ ℤ) | |
| 5 | 4 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ∈ ℤ) |
| 6 | 3, 5 | zaddcld 12693 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐾 ∈ (1..^𝑁)) → (𝐴 + 𝐾) ∈ ℤ) |
| 7 | 3 | zcnd 12690 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐾 ∈ (1..^𝑁)) → 𝐴 ∈ ℂ) |
| 8 | 4 | zcnd 12690 | . . . . 5 ⊢ (𝐾 ∈ (1..^𝑁) → 𝐾 ∈ ℂ) |
| 9 | 8 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ∈ ℂ) |
| 10 | 7, 9 | pncan2d 11588 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐴 + 𝐾) − 𝐴) = 𝐾) |
| 11 | elfzo1 13718 | . . . . . . 7 ⊢ (𝐾 ∈ (1..^𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)) | |
| 12 | nnge1 12260 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℕ → 1 ≤ 𝐾) | |
| 13 | 12 | anim1i 615 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℕ ∧ 𝐾 < 𝑁) → (1 ≤ 𝐾 ∧ 𝐾 < 𝑁)) |
| 14 | 13 | 3adant2 1131 | . . . . . . 7 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → (1 ≤ 𝐾 ∧ 𝐾 < 𝑁)) |
| 15 | 11, 14 | sylbi 217 | . . . . . 6 ⊢ (𝐾 ∈ (1..^𝑁) → (1 ≤ 𝐾 ∧ 𝐾 < 𝑁)) |
| 16 | 15 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐾 ∈ (1..^𝑁)) → (1 ≤ 𝐾 ∧ 𝐾 < 𝑁)) |
| 17 | 16 | adantr 480 | . . . 4 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐾 ∈ (1..^𝑁)) ∧ ((𝐴 + 𝐾) − 𝐴) = 𝐾) → (1 ≤ 𝐾 ∧ 𝐾 < 𝑁)) |
| 18 | breq2 5120 | . . . . . 6 ⊢ (((𝐴 + 𝐾) − 𝐴) = 𝐾 → (1 ≤ ((𝐴 + 𝐾) − 𝐴) ↔ 1 ≤ 𝐾)) | |
| 19 | 18 | adantl 481 | . . . . 5 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐾 ∈ (1..^𝑁)) ∧ ((𝐴 + 𝐾) − 𝐴) = 𝐾) → (1 ≤ ((𝐴 + 𝐾) − 𝐴) ↔ 1 ≤ 𝐾)) |
| 20 | breq1 5119 | . . . . . 6 ⊢ (((𝐴 + 𝐾) − 𝐴) = 𝐾 → (((𝐴 + 𝐾) − 𝐴) < 𝑁 ↔ 𝐾 < 𝑁)) | |
| 21 | 20 | adantl 481 | . . . . 5 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐾 ∈ (1..^𝑁)) ∧ ((𝐴 + 𝐾) − 𝐴) = 𝐾) → (((𝐴 + 𝐾) − 𝐴) < 𝑁 ↔ 𝐾 < 𝑁)) |
| 22 | 19, 21 | anbi12d 632 | . . . 4 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐾 ∈ (1..^𝑁)) ∧ ((𝐴 + 𝐾) − 𝐴) = 𝐾) → ((1 ≤ ((𝐴 + 𝐾) − 𝐴) ∧ ((𝐴 + 𝐾) − 𝐴) < 𝑁) ↔ (1 ≤ 𝐾 ∧ 𝐾 < 𝑁))) |
| 23 | 17, 22 | mpbird 257 | . . 3 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐾 ∈ (1..^𝑁)) ∧ ((𝐴 + 𝐾) − 𝐴) = 𝐾) → (1 ≤ ((𝐴 + 𝐾) − 𝐴) ∧ ((𝐴 + 𝐾) − 𝐴) < 𝑁)) |
| 24 | 10, 23 | mpdan 687 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐾 ∈ (1..^𝑁)) → (1 ≤ ((𝐴 + 𝐾) − 𝐴) ∧ ((𝐴 + 𝐾) − 𝐴) < 𝑁)) |
| 25 | difltmodne 47289 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 + 𝐾) ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (1 ≤ ((𝐴 + 𝐾) − 𝐴) ∧ ((𝐴 + 𝐾) − 𝐴) < 𝑁)) → ((𝐴 + 𝐾) mod 𝑁) ≠ (𝐴 mod 𝑁)) | |
| 26 | 2, 6, 3, 24, 25 | syl121anc 1376 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐴 + 𝐾) mod 𝑁) ≠ (𝐴 mod 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 class class class wbr 5116 ‘cfv 6527 (class class class)co 7399 ℂcc 11119 1c1 11122 + caddc 11124 < clt 11261 ≤ cle 11262 − cmin 11458 ℕcn 12232 2c2 12287 ℤcz 12580 ℤ≥cuz 12844 ..^cfzo 13660 mod cmo 13875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 ax-pre-sup 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-1st 7982 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-sup 9448 df-inf 9449 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-div 11887 df-nn 12233 df-2 12295 df-n0 12494 df-z 12581 df-uz 12845 df-rp 13001 df-fz 13514 df-fzo 13661 df-fl 13798 df-mod 13876 df-dvds 16258 |
| This theorem is referenced by: addmodne 47291 zp1modne 47293 gpg5nbgrvtx13starlem2 47973 |
| Copyright terms: Public domain | W3C validator |