Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  addmodne Structured version   Visualization version   GIF version

Theorem addmodne 47319
Description: The sum of a nonnegative integer and a positive integer modulo a number greater than both integers is not equal to the nonnegative integer. (Contributed by AV, 27-Aug-2025.) (Proof shortened by AV, 6-Sep-2025.)
Assertion
Ref Expression
addmodne ((𝑀 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐴 < 𝑀) ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → ((𝐴 + 𝐵) mod 𝑀) ≠ 𝐴)

Proof of Theorem addmodne
StepHypRef Expression
1 2z 12632 . . . . . . 7 2 ∈ ℤ
21a1i 11 . . . . . 6 ((𝑀 ∈ ℕ ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → 2 ∈ ℤ)
3 nnz 12617 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
43adantr 480 . . . . . 6 ((𝑀 ∈ ℕ ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → 𝑀 ∈ ℤ)
5 1red 11244 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → 1 ∈ ℝ)
6 nnre 12255 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
76ad2antrl 728 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → 𝐵 ∈ ℝ)
8 nnre 12255 . . . . . . . . 9 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
98adantr 480 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → 𝑀 ∈ ℝ)
10 nnge1 12276 . . . . . . . . 9 (𝐵 ∈ ℕ → 1 ≤ 𝐵)
1110ad2antrl 728 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → 1 ≤ 𝐵)
12 simprr 772 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → 𝐵 < 𝑀)
135, 7, 9, 11, 12lelttrd 11401 . . . . . . 7 ((𝑀 ∈ ℕ ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → 1 < 𝑀)
14 1zzd 12631 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐵 < 𝑀) → 1 ∈ ℤ)
15 zltp1le 12650 . . . . . . . . 9 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (1 < 𝑀 ↔ (1 + 1) ≤ 𝑀))
1614, 3, 15syl2anr 597 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → (1 < 𝑀 ↔ (1 + 1) ≤ 𝑀))
17 1p1e2 12373 . . . . . . . . 9 (1 + 1) = 2
1817breq1i 5130 . . . . . . . 8 ((1 + 1) ≤ 𝑀 ↔ 2 ≤ 𝑀)
1916, 18bitrdi 287 . . . . . . 7 ((𝑀 ∈ ℕ ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → (1 < 𝑀 ↔ 2 ≤ 𝑀))
2013, 19mpbid 232 . . . . . 6 ((𝑀 ∈ ℕ ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → 2 ≤ 𝑀)
212, 4, 203jca 1128 . . . . 5 ((𝑀 ∈ ℕ ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → (2 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 2 ≤ 𝑀))
22213adant2 1131 . . . 4 ((𝑀 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐴 < 𝑀) ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → (2 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 2 ≤ 𝑀))
23 eluz2 12866 . . . 4 (𝑀 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 2 ≤ 𝑀))
2422, 23sylibr 234 . . 3 ((𝑀 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐴 < 𝑀) ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → 𝑀 ∈ (ℤ‘2))
25 nn0z 12621 . . . . 5 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
2625adantr 480 . . . 4 ((𝐴 ∈ ℕ0𝐴 < 𝑀) → 𝐴 ∈ ℤ)
27263ad2ant2 1134 . . 3 ((𝑀 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐴 < 𝑀) ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → 𝐴 ∈ ℤ)
28 simprl 770 . . . . . 6 ((𝑀 ∈ ℕ ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → 𝐵 ∈ ℕ)
29 simpl 482 . . . . . 6 ((𝑀 ∈ ℕ ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → 𝑀 ∈ ℕ)
3028, 29, 123jca 1128 . . . . 5 ((𝑀 ∈ ℕ ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → (𝐵 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝐵 < 𝑀))
31303adant2 1131 . . . 4 ((𝑀 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐴 < 𝑀) ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → (𝐵 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝐵 < 𝑀))
32 elfzo1 13734 . . . 4 (𝐵 ∈ (1..^𝑀) ↔ (𝐵 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝐵 < 𝑀))
3331, 32sylibr 234 . . 3 ((𝑀 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐴 < 𝑀) ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → 𝐵 ∈ (1..^𝑀))
34 zplusmodne 47318 . . 3 ((𝑀 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^𝑀)) → ((𝐴 + 𝐵) mod 𝑀) ≠ (𝐴 mod 𝑀))
3524, 27, 33, 34syl3anc 1372 . 2 ((𝑀 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐴 < 𝑀) ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → ((𝐴 + 𝐵) mod 𝑀) ≠ (𝐴 mod 𝑀))
36 nnrp 13028 . . . . 5 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ+)
37 nn0re 12518 . . . . . 6 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
3837adantr 480 . . . . 5 ((𝐴 ∈ ℕ0𝐴 < 𝑀) → 𝐴 ∈ ℝ)
3936, 38anim12ci 614 . . . 4 ((𝑀 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐴 < 𝑀)) → (𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+))
40393adant3 1132 . . 3 ((𝑀 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐴 < 𝑀) ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → (𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+))
41 nn0ge0 12534 . . . . 5 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
4241anim1i 615 . . . 4 ((𝐴 ∈ ℕ0𝐴 < 𝑀) → (0 ≤ 𝐴𝐴 < 𝑀))
43423ad2ant2 1134 . . 3 ((𝑀 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐴 < 𝑀) ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → (0 ≤ 𝐴𝐴 < 𝑀))
44 modid 13918 . . 3 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) ∧ (0 ≤ 𝐴𝐴 < 𝑀)) → (𝐴 mod 𝑀) = 𝐴)
4540, 43, 44syl2anc 584 . 2 ((𝑀 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐴 < 𝑀) ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → (𝐴 mod 𝑀) = 𝐴)
4635, 45neeqtrd 3000 1 ((𝑀 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐴 < 𝑀) ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → ((𝐴 + 𝐵) mod 𝑀) ≠ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931   class class class wbr 5123  cfv 6541  (class class class)co 7413  cr 11136  0cc0 11137  1c1 11138   + caddc 11140   < clt 11277  cle 11278  cn 12248  2c2 12303  0cn0 12509  cz 12596  cuz 12860  +crp 13016  ..^cfzo 13676   mod cmo 13891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-sup 9464  df-inf 9465  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-n0 12510  df-z 12597  df-uz 12861  df-rp 13017  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-dvds 16274
This theorem is referenced by:  plusmod5ne  47320  gpgusgralem  47984  gpg3nbgrvtx0  48005
  Copyright terms: Public domain W3C validator