Proof of Theorem addmodne
| Step | Hyp | Ref
| Expression |
| 1 | | 2z 12645 |
. . . . . . 7
⊢ 2 ∈
ℤ |
| 2 | 1 | a1i 11 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → 2 ∈ ℤ) |
| 3 | | nnz 12630 |
. . . . . . 7
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℤ) |
| 4 | 3 | adantr 480 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → 𝑀 ∈ ℤ) |
| 5 | | 1red 11258 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → 1 ∈ ℝ) |
| 6 | | nnre 12269 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℝ) |
| 7 | 6 | ad2antrl 728 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → 𝐵 ∈ ℝ) |
| 8 | | nnre 12269 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℝ) |
| 9 | 8 | adantr 480 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → 𝑀 ∈ ℝ) |
| 10 | | nnge1 12290 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℕ → 1 ≤
𝐵) |
| 11 | 10 | ad2antrl 728 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → 1 ≤ 𝐵) |
| 12 | | simprr 773 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → 𝐵 < 𝑀) |
| 13 | 5, 7, 9, 11, 12 | lelttrd 11415 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → 1 < 𝑀) |
| 14 | | 1zzd 12644 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ℕ ∧ 𝐵 < 𝑀) → 1 ∈ ℤ) |
| 15 | | zltp1le 12663 |
. . . . . . . . 9
⊢ ((1
∈ ℤ ∧ 𝑀
∈ ℤ) → (1 < 𝑀 ↔ (1 + 1) ≤ 𝑀)) |
| 16 | 14, 3, 15 | syl2anr 597 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → (1 < 𝑀 ↔ (1 + 1) ≤ 𝑀)) |
| 17 | | 1p1e2 12387 |
. . . . . . . . 9
⊢ (1 + 1) =
2 |
| 18 | 17 | breq1i 5148 |
. . . . . . . 8
⊢ ((1 + 1)
≤ 𝑀 ↔ 2 ≤ 𝑀) |
| 19 | 16, 18 | bitrdi 287 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → (1 < 𝑀 ↔ 2 ≤ 𝑀)) |
| 20 | 13, 19 | mpbid 232 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → 2 ≤ 𝑀) |
| 21 | 2, 4, 20 | 3jca 1129 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → (2 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 2 ≤
𝑀)) |
| 22 | 21 | 3adant2 1132 |
. . . 4
⊢ ((𝑀 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐴 < 𝑀) ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → (2 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 2 ≤
𝑀)) |
| 23 | | eluz2 12880 |
. . . 4
⊢ (𝑀 ∈
(ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 2 ≤
𝑀)) |
| 24 | 22, 23 | sylibr 234 |
. . 3
⊢ ((𝑀 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐴 < 𝑀) ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → 𝑀 ∈
(ℤ≥‘2)) |
| 25 | | nn0z 12634 |
. . . . 5
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℤ) |
| 26 | 25 | adantr 480 |
. . . 4
⊢ ((𝐴 ∈ ℕ0
∧ 𝐴 < 𝑀) → 𝐴 ∈ ℤ) |
| 27 | 26 | 3ad2ant2 1135 |
. . 3
⊢ ((𝑀 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐴 < 𝑀) ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → 𝐴 ∈ ℤ) |
| 28 | | simprl 771 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → 𝐵 ∈ ℕ) |
| 29 | | simpl 482 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → 𝑀 ∈ ℕ) |
| 30 | 28, 29, 12 | 3jca 1129 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → (𝐵 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝐵 < 𝑀)) |
| 31 | 30 | 3adant2 1132 |
. . . 4
⊢ ((𝑀 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐴 < 𝑀) ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → (𝐵 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝐵 < 𝑀)) |
| 32 | | elfzo1 13748 |
. . . 4
⊢ (𝐵 ∈ (1..^𝑀) ↔ (𝐵 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝐵 < 𝑀)) |
| 33 | 31, 32 | sylibr 234 |
. . 3
⊢ ((𝑀 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐴 < 𝑀) ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → 𝐵 ∈ (1..^𝑀)) |
| 34 | | zplusmodne 47318 |
. . 3
⊢ ((𝑀 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^𝑀)) → ((𝐴 + 𝐵) mod 𝑀) ≠ (𝐴 mod 𝑀)) |
| 35 | 24, 27, 33, 34 | syl3anc 1373 |
. 2
⊢ ((𝑀 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐴 < 𝑀) ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → ((𝐴 + 𝐵) mod 𝑀) ≠ (𝐴 mod 𝑀)) |
| 36 | | nnrp 13042 |
. . . . 5
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℝ+) |
| 37 | | nn0re 12531 |
. . . . . 6
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℝ) |
| 38 | 37 | adantr 480 |
. . . . 5
⊢ ((𝐴 ∈ ℕ0
∧ 𝐴 < 𝑀) → 𝐴 ∈ ℝ) |
| 39 | 36, 38 | anim12ci 614 |
. . . 4
⊢ ((𝑀 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐴 < 𝑀)) → (𝐴 ∈ ℝ ∧ 𝑀 ∈
ℝ+)) |
| 40 | 39 | 3adant3 1133 |
. . 3
⊢ ((𝑀 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐴 < 𝑀) ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → (𝐴 ∈ ℝ ∧ 𝑀 ∈
ℝ+)) |
| 41 | | nn0ge0 12547 |
. . . . 5
⊢ (𝐴 ∈ ℕ0
→ 0 ≤ 𝐴) |
| 42 | 41 | anim1i 615 |
. . . 4
⊢ ((𝐴 ∈ ℕ0
∧ 𝐴 < 𝑀) → (0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) |
| 43 | 42 | 3ad2ant2 1135 |
. . 3
⊢ ((𝑀 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐴 < 𝑀) ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → (0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) |
| 44 | | modid 13932 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+)
∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → (𝐴 mod 𝑀) = 𝐴) |
| 45 | 40, 43, 44 | syl2anc 584 |
. 2
⊢ ((𝑀 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐴 < 𝑀) ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → (𝐴 mod 𝑀) = 𝐴) |
| 46 | 35, 45 | neeqtrd 3009 |
1
⊢ ((𝑀 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐴 < 𝑀) ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → ((𝐴 + 𝐵) mod 𝑀) ≠ 𝐴) |