| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > plyid | GIF version | ||
| Description: The identity function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| Ref | Expression |
|---|---|
| plyid | ⊢ ((𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆) → Xp ∈ (Poly‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptresid 5018 | . . 3 ⊢ ( I ↾ ℂ) = (𝑧 ∈ ℂ ↦ 𝑧) | |
| 2 | df-idp 15247 | . . 3 ⊢ Xp = ( I ↾ ℂ) | |
| 3 | exp1 10697 | . . . 4 ⊢ (𝑧 ∈ ℂ → (𝑧↑1) = 𝑧) | |
| 4 | 3 | mpteq2ia 4134 | . . 3 ⊢ (𝑧 ∈ ℂ ↦ (𝑧↑1)) = (𝑧 ∈ ℂ ↦ 𝑧) |
| 5 | 1, 2, 4 | 3eqtr4i 2237 | . 2 ⊢ Xp = (𝑧 ∈ ℂ ↦ (𝑧↑1)) |
| 6 | 1nn0 9318 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 7 | plypow 15260 | . . 3 ⊢ ((𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆 ∧ 1 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ (𝑧↑1)) ∈ (Poly‘𝑆)) | |
| 8 | 6, 7 | mp3an3 1339 | . 2 ⊢ ((𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆) → (𝑧 ∈ ℂ ↦ (𝑧↑1)) ∈ (Poly‘𝑆)) |
| 9 | 5, 8 | eqeltrid 2293 | 1 ⊢ ((𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆) → Xp ∈ (Poly‘𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 ⊆ wss 3167 ↦ cmpt 4109 I cid 4339 ↾ cres 4681 ‘cfv 5276 (class class class)co 5951 ℂcc 7930 1c1 7933 ℕ0cn0 9302 ↑cexp 10690 Polycply 15244 Xpcidp 15245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 ax-caucvg 8052 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-isom 5285 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-irdg 6463 df-frec 6484 df-1o 6509 df-oadd 6513 df-er 6627 df-map 6744 df-en 6835 df-dom 6836 df-fin 6837 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-n0 9303 df-z 9380 df-uz 9656 df-q 9748 df-rp 9783 df-fz 10138 df-fzo 10272 df-seqfrec 10600 df-exp 10691 df-ihash 10928 df-cj 11197 df-re 11198 df-im 11199 df-rsqrt 11353 df-abs 11354 df-clim 11634 df-sumdc 11709 df-ply 15246 df-idp 15247 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |