![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3cyclpd | Structured version Visualization version GIF version |
Description: Construction of a 3-cycle from three given edges in a graph, containing an endpoint of one of these edges. (Contributed by Alexander van der Vekens, 17-Nov-2017.) (Revised by AV, 10-Feb-2021.) (Revised by AV, 24-Mar-2021.) |
Ref | Expression |
---|---|
3wlkd.p | β’ π = β¨βπ΄π΅πΆπ·ββ© |
3wlkd.f | β’ πΉ = β¨βπ½πΎπΏββ© |
3wlkd.s | β’ (π β ((π΄ β π β§ π΅ β π) β§ (πΆ β π β§ π· β π))) |
3wlkd.n | β’ (π β ((π΄ β π΅ β§ π΄ β πΆ) β§ (π΅ β πΆ β§ π΅ β π·) β§ πΆ β π·)) |
3wlkd.e | β’ (π β ({π΄, π΅} β (πΌβπ½) β§ {π΅, πΆ} β (πΌβπΎ) β§ {πΆ, π·} β (πΌβπΏ))) |
3wlkd.v | β’ π = (VtxβπΊ) |
3wlkd.i | β’ πΌ = (iEdgβπΊ) |
3trld.n | β’ (π β (π½ β πΎ β§ π½ β πΏ β§ πΎ β πΏ)) |
3cycld.e | β’ (π β π΄ = π·) |
Ref | Expression |
---|---|
3cyclpd | β’ (π β (πΉ(CyclesβπΊ)π β§ (β―βπΉ) = 3 β§ (πβ0) = π΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3wlkd.p | . . 3 β’ π = β¨βπ΄π΅πΆπ·ββ© | |
2 | 3wlkd.f | . . 3 β’ πΉ = β¨βπ½πΎπΏββ© | |
3 | 3wlkd.s | . . 3 β’ (π β ((π΄ β π β§ π΅ β π) β§ (πΆ β π β§ π· β π))) | |
4 | 3wlkd.n | . . 3 β’ (π β ((π΄ β π΅ β§ π΄ β πΆ) β§ (π΅ β πΆ β§ π΅ β π·) β§ πΆ β π·)) | |
5 | 3wlkd.e | . . 3 β’ (π β ({π΄, π΅} β (πΌβπ½) β§ {π΅, πΆ} β (πΌβπΎ) β§ {πΆ, π·} β (πΌβπΏ))) | |
6 | 3wlkd.v | . . 3 β’ π = (VtxβπΊ) | |
7 | 3wlkd.i | . . 3 β’ πΌ = (iEdgβπΊ) | |
8 | 3trld.n | . . 3 β’ (π β (π½ β πΎ β§ π½ β πΏ β§ πΎ β πΏ)) | |
9 | 3cycld.e | . . 3 β’ (π β π΄ = π·) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | 3cycld 29420 | . 2 β’ (π β πΉ(CyclesβπΊ)π) |
11 | 2 | fveq2i 6891 | . . . 4 β’ (β―βπΉ) = (β―ββ¨βπ½πΎπΏββ©) |
12 | s3len 14841 | . . . 4 β’ (β―ββ¨βπ½πΎπΏββ©) = 3 | |
13 | 11, 12 | eqtri 2760 | . . 3 β’ (β―βπΉ) = 3 |
14 | 13 | a1i 11 | . 2 β’ (π β (β―βπΉ) = 3) |
15 | 1 | fveq1i 6889 | . . . . 5 β’ (πβ0) = (β¨βπ΄π΅πΆπ·ββ©β0) |
16 | s4fv0 14842 | . . . . 5 β’ (π΄ β π β (β¨βπ΄π΅πΆπ·ββ©β0) = π΄) | |
17 | 15, 16 | eqtrid 2784 | . . . 4 β’ (π΄ β π β (πβ0) = π΄) |
18 | 17 | ad2antrr 724 | . . 3 β’ (((π΄ β π β§ π΅ β π) β§ (πΆ β π β§ π· β π)) β (πβ0) = π΄) |
19 | 3, 18 | syl 17 | . 2 β’ (π β (πβ0) = π΄) |
20 | 10, 14, 19 | 3jca 1128 | 1 β’ (π β (πΉ(CyclesβπΊ)π β§ (β―βπΉ) = 3 β§ (πβ0) = π΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 β wss 3947 {cpr 4629 class class class wbr 5147 βcfv 6540 0cc0 11106 3c3 12264 β―chash 14286 β¨βcs3 14789 β¨βcs4 14790 Vtxcvtx 28245 iEdgciedg 28246 Cyclesccycls 29031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-ifp 1062 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 df-hash 14287 df-word 14461 df-concat 14517 df-s1 14542 df-s2 14795 df-s3 14796 df-s4 14797 df-wlks 28845 df-trls 28938 df-pths 28962 df-cycls 29033 |
This theorem is referenced by: uhgr3cyclex 29424 |
Copyright terms: Public domain | W3C validator |