MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem7 Structured version   Visualization version   GIF version

Theorem 4sqlem7 16977
Description: Lemma for 4sq 16997. (Contributed by Mario Carneiro, 15-Jul-2014.)
Hypotheses
Ref Expression
4sqlem5.2 (𝜑𝐴 ∈ ℤ)
4sqlem5.3 (𝜑𝑀 ∈ ℕ)
4sqlem5.4 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
Assertion
Ref Expression
4sqlem7 (𝜑 → (𝐵↑2) ≤ (((𝑀↑2) / 2) / 2))

Proof of Theorem 4sqlem7
StepHypRef Expression
1 4sqlem5.2 . . . . . . 7 (𝜑𝐴 ∈ ℤ)
2 4sqlem5.3 . . . . . . 7 (𝜑𝑀 ∈ ℕ)
3 4sqlem5.4 . . . . . . 7 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
41, 2, 34sqlem5 16975 . . . . . 6 (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴𝐵) / 𝑀) ∈ ℤ))
54simpld 494 . . . . 5 (𝜑𝐵 ∈ ℤ)
65zred 12719 . . . 4 (𝜑𝐵 ∈ ℝ)
72nnrpd 13072 . . . . . 6 (𝜑𝑀 ∈ ℝ+)
87rphalfcld 13086 . . . . 5 (𝜑 → (𝑀 / 2) ∈ ℝ+)
98rpred 13074 . . . 4 (𝜑 → (𝑀 / 2) ∈ ℝ)
101, 2, 34sqlem6 16976 . . . . 5 (𝜑 → (-(𝑀 / 2) ≤ 𝐵𝐵 < (𝑀 / 2)))
1110simprd 495 . . . 4 (𝜑𝐵 < (𝑀 / 2))
126, 9, 11ltled 11406 . . 3 (𝜑𝐵 ≤ (𝑀 / 2))
1310simpld 494 . . . 4 (𝜑 → -(𝑀 / 2) ≤ 𝐵)
149, 6, 13lenegcon1d 11842 . . 3 (𝜑 → -𝐵 ≤ (𝑀 / 2))
158rpge0d 13078 . . . 4 (𝜑 → 0 ≤ (𝑀 / 2))
16 lenegsq 15355 . . . 4 ((𝐵 ∈ ℝ ∧ (𝑀 / 2) ∈ ℝ ∧ 0 ≤ (𝑀 / 2)) → ((𝐵 ≤ (𝑀 / 2) ∧ -𝐵 ≤ (𝑀 / 2)) ↔ (𝐵↑2) ≤ ((𝑀 / 2)↑2)))
176, 9, 15, 16syl3anc 1370 . . 3 (𝜑 → ((𝐵 ≤ (𝑀 / 2) ∧ -𝐵 ≤ (𝑀 / 2)) ↔ (𝐵↑2) ≤ ((𝑀 / 2)↑2)))
1812, 14, 17mpbi2and 712 . 2 (𝜑 → (𝐵↑2) ≤ ((𝑀 / 2)↑2))
19 2cnd 12341 . . . . 5 (𝜑 → 2 ∈ ℂ)
2019sqvald 14179 . . . 4 (𝜑 → (2↑2) = (2 · 2))
2120oveq2d 7446 . . 3 (𝜑 → ((𝑀↑2) / (2↑2)) = ((𝑀↑2) / (2 · 2)))
222nncnd 12279 . . . 4 (𝜑𝑀 ∈ ℂ)
23 2ne0 12367 . . . . 5 2 ≠ 0
2423a1i 11 . . . 4 (𝜑 → 2 ≠ 0)
2522, 19, 24sqdivd 14195 . . 3 (𝜑 → ((𝑀 / 2)↑2) = ((𝑀↑2) / (2↑2)))
2622sqcld 14180 . . . 4 (𝜑 → (𝑀↑2) ∈ ℂ)
2726, 19, 19, 24, 24divdiv1d 12071 . . 3 (𝜑 → (((𝑀↑2) / 2) / 2) = ((𝑀↑2) / (2 · 2)))
2821, 25, 273eqtr4d 2784 . 2 (𝜑 → ((𝑀 / 2)↑2) = (((𝑀↑2) / 2) / 2))
2918, 28breqtrd 5173 1 (𝜑 → (𝐵↑2) ≤ (((𝑀↑2) / 2) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wne 2937   class class class wbr 5147  (class class class)co 7430  cr 11151  0cc0 11152   + caddc 11155   · cmul 11157   < clt 11292  cle 11293  cmin 11489  -cneg 11490   / cdiv 11917  cn 12263  2c2 12318  cz 12610   mod cmo 13905  cexp 14098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271
This theorem is referenced by:  4sqlem15  16992  4sqlem16  16993  2sqlem8  27484
  Copyright terms: Public domain W3C validator