| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4sqlem7 | Structured version Visualization version GIF version | ||
| Description: Lemma for 4sq 16911. (Contributed by Mario Carneiro, 15-Jul-2014.) |
| Ref | Expression |
|---|---|
| 4sqlem5.2 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 4sqlem5.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 4sqlem5.4 | ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
| Ref | Expression |
|---|---|
| 4sqlem7 | ⊢ (𝜑 → (𝐵↑2) ≤ (((𝑀↑2) / 2) / 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sqlem5.2 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
| 2 | 4sqlem5.3 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 3 | 4sqlem5.4 | . . . . . . 7 ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
| 4 | 1, 2, 3 | 4sqlem5 16889 | . . . . . 6 ⊢ (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
| 5 | 4 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℤ) |
| 6 | 5 | zred 12614 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 7 | 2 | nnrpd 12969 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℝ+) |
| 8 | 7 | rphalfcld 12983 | . . . . 5 ⊢ (𝜑 → (𝑀 / 2) ∈ ℝ+) |
| 9 | 8 | rpred 12971 | . . . 4 ⊢ (𝜑 → (𝑀 / 2) ∈ ℝ) |
| 10 | 1, 2, 3 | 4sqlem6 16890 | . . . . 5 ⊢ (𝜑 → (-(𝑀 / 2) ≤ 𝐵 ∧ 𝐵 < (𝑀 / 2))) |
| 11 | 10 | simprd 495 | . . . 4 ⊢ (𝜑 → 𝐵 < (𝑀 / 2)) |
| 12 | 6, 9, 11 | ltled 11298 | . . 3 ⊢ (𝜑 → 𝐵 ≤ (𝑀 / 2)) |
| 13 | 10 | simpld 494 | . . . 4 ⊢ (𝜑 → -(𝑀 / 2) ≤ 𝐵) |
| 14 | 9, 6, 13 | lenegcon1d 11736 | . . 3 ⊢ (𝜑 → -𝐵 ≤ (𝑀 / 2)) |
| 15 | 8 | rpge0d 12975 | . . . 4 ⊢ (𝜑 → 0 ≤ (𝑀 / 2)) |
| 16 | lenegsq 15263 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ (𝑀 / 2) ∈ ℝ ∧ 0 ≤ (𝑀 / 2)) → ((𝐵 ≤ (𝑀 / 2) ∧ -𝐵 ≤ (𝑀 / 2)) ↔ (𝐵↑2) ≤ ((𝑀 / 2)↑2))) | |
| 17 | 6, 9, 15, 16 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ((𝐵 ≤ (𝑀 / 2) ∧ -𝐵 ≤ (𝑀 / 2)) ↔ (𝐵↑2) ≤ ((𝑀 / 2)↑2))) |
| 18 | 12, 14, 17 | mpbi2and 712 | . 2 ⊢ (𝜑 → (𝐵↑2) ≤ ((𝑀 / 2)↑2)) |
| 19 | 2cnd 12240 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℂ) | |
| 20 | 19 | sqvald 14084 | . . . 4 ⊢ (𝜑 → (2↑2) = (2 · 2)) |
| 21 | 20 | oveq2d 7385 | . . 3 ⊢ (𝜑 → ((𝑀↑2) / (2↑2)) = ((𝑀↑2) / (2 · 2))) |
| 22 | 2 | nncnd 12178 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 23 | 2ne0 12266 | . . . . 5 ⊢ 2 ≠ 0 | |
| 24 | 23 | a1i 11 | . . . 4 ⊢ (𝜑 → 2 ≠ 0) |
| 25 | 22, 19, 24 | sqdivd 14100 | . . 3 ⊢ (𝜑 → ((𝑀 / 2)↑2) = ((𝑀↑2) / (2↑2))) |
| 26 | 22 | sqcld 14085 | . . . 4 ⊢ (𝜑 → (𝑀↑2) ∈ ℂ) |
| 27 | 26, 19, 19, 24, 24 | divdiv1d 11965 | . . 3 ⊢ (𝜑 → (((𝑀↑2) / 2) / 2) = ((𝑀↑2) / (2 · 2))) |
| 28 | 21, 25, 27 | 3eqtr4d 2774 | . 2 ⊢ (𝜑 → ((𝑀 / 2)↑2) = (((𝑀↑2) / 2) / 2)) |
| 29 | 18, 28 | breqtrd 5128 | 1 ⊢ (𝜑 → (𝐵↑2) ≤ (((𝑀↑2) / 2) / 2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5102 (class class class)co 7369 ℝcr 11043 0cc0 11044 + caddc 11047 · cmul 11049 < clt 11184 ≤ cle 11185 − cmin 11381 -cneg 11382 / cdiv 11811 ℕcn 12162 2c2 12217 ℤcz 12505 mod cmo 13807 ↑cexp 14002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-fl 13730 df-mod 13808 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 |
| This theorem is referenced by: 4sqlem15 16906 4sqlem16 16907 2sqlem8 27370 |
| Copyright terms: Public domain | W3C validator |