![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 4sqlem7 | Structured version Visualization version GIF version |
Description: Lemma for 4sq 16961. (Contributed by Mario Carneiro, 15-Jul-2014.) |
Ref | Expression |
---|---|
4sqlem5.2 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
4sqlem5.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
4sqlem5.4 | ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
Ref | Expression |
---|---|
4sqlem7 | ⊢ (𝜑 → (𝐵↑2) ≤ (((𝑀↑2) / 2) / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4sqlem5.2 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
2 | 4sqlem5.3 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
3 | 4sqlem5.4 | . . . . . . 7 ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
4 | 1, 2, 3 | 4sqlem5 16939 | . . . . . 6 ⊢ (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
5 | 4 | simpld 493 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℤ) |
6 | 5 | zred 12712 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
7 | 2 | nnrpd 13062 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℝ+) |
8 | 7 | rphalfcld 13076 | . . . . 5 ⊢ (𝜑 → (𝑀 / 2) ∈ ℝ+) |
9 | 8 | rpred 13064 | . . . 4 ⊢ (𝜑 → (𝑀 / 2) ∈ ℝ) |
10 | 1, 2, 3 | 4sqlem6 16940 | . . . . 5 ⊢ (𝜑 → (-(𝑀 / 2) ≤ 𝐵 ∧ 𝐵 < (𝑀 / 2))) |
11 | 10 | simprd 494 | . . . 4 ⊢ (𝜑 → 𝐵 < (𝑀 / 2)) |
12 | 6, 9, 11 | ltled 11403 | . . 3 ⊢ (𝜑 → 𝐵 ≤ (𝑀 / 2)) |
13 | 10 | simpld 493 | . . . 4 ⊢ (𝜑 → -(𝑀 / 2) ≤ 𝐵) |
14 | 9, 6, 13 | lenegcon1d 11837 | . . 3 ⊢ (𝜑 → -𝐵 ≤ (𝑀 / 2)) |
15 | 8 | rpge0d 13068 | . . . 4 ⊢ (𝜑 → 0 ≤ (𝑀 / 2)) |
16 | lenegsq 15320 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ (𝑀 / 2) ∈ ℝ ∧ 0 ≤ (𝑀 / 2)) → ((𝐵 ≤ (𝑀 / 2) ∧ -𝐵 ≤ (𝑀 / 2)) ↔ (𝐵↑2) ≤ ((𝑀 / 2)↑2))) | |
17 | 6, 9, 15, 16 | syl3anc 1368 | . . 3 ⊢ (𝜑 → ((𝐵 ≤ (𝑀 / 2) ∧ -𝐵 ≤ (𝑀 / 2)) ↔ (𝐵↑2) ≤ ((𝑀 / 2)↑2))) |
18 | 12, 14, 17 | mpbi2and 710 | . 2 ⊢ (𝜑 → (𝐵↑2) ≤ ((𝑀 / 2)↑2)) |
19 | 2cnd 12336 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℂ) | |
20 | 19 | sqvald 14156 | . . . 4 ⊢ (𝜑 → (2↑2) = (2 · 2)) |
21 | 20 | oveq2d 7432 | . . 3 ⊢ (𝜑 → ((𝑀↑2) / (2↑2)) = ((𝑀↑2) / (2 · 2))) |
22 | 2 | nncnd 12274 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
23 | 2ne0 12362 | . . . . 5 ⊢ 2 ≠ 0 | |
24 | 23 | a1i 11 | . . . 4 ⊢ (𝜑 → 2 ≠ 0) |
25 | 22, 19, 24 | sqdivd 14172 | . . 3 ⊢ (𝜑 → ((𝑀 / 2)↑2) = ((𝑀↑2) / (2↑2))) |
26 | 22 | sqcld 14157 | . . . 4 ⊢ (𝜑 → (𝑀↑2) ∈ ℂ) |
27 | 26, 19, 19, 24, 24 | divdiv1d 12066 | . . 3 ⊢ (𝜑 → (((𝑀↑2) / 2) / 2) = ((𝑀↑2) / (2 · 2))) |
28 | 21, 25, 27 | 3eqtr4d 2776 | . 2 ⊢ (𝜑 → ((𝑀 / 2)↑2) = (((𝑀↑2) / 2) / 2)) |
29 | 18, 28 | breqtrd 5171 | 1 ⊢ (𝜑 → (𝐵↑2) ≤ (((𝑀↑2) / 2) / 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 class class class wbr 5145 (class class class)co 7416 ℝcr 11148 0cc0 11149 + caddc 11152 · cmul 11154 < clt 11289 ≤ cle 11290 − cmin 11485 -cneg 11486 / cdiv 11912 ℕcn 12258 2c2 12313 ℤcz 12604 mod cmo 13883 ↑cexp 14075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 ax-pre-sup 11227 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-sup 9478 df-inf 9479 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-div 11913 df-nn 12259 df-2 12321 df-3 12322 df-n0 12519 df-z 12605 df-uz 12869 df-rp 13023 df-fl 13806 df-mod 13884 df-seq 14016 df-exp 14076 df-cj 15099 df-re 15100 df-im 15101 df-sqrt 15235 df-abs 15236 |
This theorem is referenced by: 4sqlem15 16956 4sqlem16 16957 2sqlem8 27452 |
Copyright terms: Public domain | W3C validator |