![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemfrci | Structured version Visualization version GIF version |
Description: Reverse counting preserves a tie at the first tie. (Contributed by Thierry Arnoux, 21-Apr-2017.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
ballotth.s | ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
ballotth.r | ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
ballotlemg | ⊢ ↑ = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣 ∩ 𝑢)) − (♯‘(𝑣 ∖ 𝑢)))) |
Ref | Expression |
---|---|
ballotlemfrci | ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐹‘(𝑅‘𝐶))‘(𝐼‘𝐶)) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ballotth.m | . . . . . . 7 ⊢ 𝑀 ∈ ℕ | |
2 | ballotth.n | . . . . . . 7 ⊢ 𝑁 ∈ ℕ | |
3 | ballotth.o | . . . . . . 7 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
4 | ballotth.p | . . . . . . 7 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
5 | ballotth.f | . . . . . . 7 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
6 | ballotth.e | . . . . . . 7 ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | |
7 | ballotth.mgtn | . . . . . . 7 ⊢ 𝑁 < 𝑀 | |
8 | ballotth.i | . . . . . . 7 ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | ballotlemiex 33101 | . . . . . 6 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0)) |
10 | 9 | simpld 495 | . . . . 5 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁))) |
11 | elfzuz 13437 | . . . . 5 ⊢ ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼‘𝐶) ∈ (ℤ≥‘1)) | |
12 | eluzfz2 13449 | . . . . 5 ⊢ ((𝐼‘𝐶) ∈ (ℤ≥‘1) → (𝐼‘𝐶) ∈ (1...(𝐼‘𝐶))) | |
13 | 10, 11, 12 | 3syl 18 | . . . 4 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ (1...(𝐼‘𝐶))) |
14 | ballotth.s | . . . . 5 ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) | |
15 | ballotth.r | . . . . 5 ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) | |
16 | ballotlemg | . . . . 5 ⊢ ↑ = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣 ∩ 𝑢)) − (♯‘(𝑣 ∖ 𝑢)))) | |
17 | 1, 2, 3, 4, 5, 6, 7, 8, 14, 15, 16 | ballotlemfrc 33126 | . . . 4 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (𝐼‘𝐶) ∈ (1...(𝐼‘𝐶))) → ((𝐹‘(𝑅‘𝐶))‘(𝐼‘𝐶)) = (𝐶 ↑ (((𝑆‘𝐶)‘(𝐼‘𝐶))...(𝐼‘𝐶)))) |
18 | 13, 17 | mpdan 685 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐹‘(𝑅‘𝐶))‘(𝐼‘𝐶)) = (𝐶 ↑ (((𝑆‘𝐶)‘(𝐼‘𝐶))...(𝐼‘𝐶)))) |
19 | 1, 2, 3, 4, 5, 6, 7, 8, 14 | ballotlemsi 33114 | . . . . 5 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝑆‘𝐶)‘(𝐼‘𝐶)) = 1) |
20 | 19 | oveq1d 7372 | . . . 4 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (((𝑆‘𝐶)‘(𝐼‘𝐶))...(𝐼‘𝐶)) = (1...(𝐼‘𝐶))) |
21 | 20 | oveq2d 7373 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐶 ↑ (((𝑆‘𝐶)‘(𝐼‘𝐶))...(𝐼‘𝐶))) = (𝐶 ↑ (1...(𝐼‘𝐶)))) |
22 | 18, 21 | eqtrd 2776 | . 2 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐹‘(𝑅‘𝐶))‘(𝐼‘𝐶)) = (𝐶 ↑ (1...(𝐼‘𝐶)))) |
23 | fz1ssfz0 13537 | . . . 4 ⊢ (1...(𝑀 + 𝑁)) ⊆ (0...(𝑀 + 𝑁)) | |
24 | 23, 10 | sselid 3942 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ (0...(𝑀 + 𝑁))) |
25 | 1, 2, 3, 4, 5, 6, 7, 8, 14, 15, 16 | ballotlemfg 33125 | . . 3 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (𝐼‘𝐶) ∈ (0...(𝑀 + 𝑁))) → ((𝐹‘𝐶)‘(𝐼‘𝐶)) = (𝐶 ↑ (1...(𝐼‘𝐶)))) |
26 | 24, 25 | mpdan 685 | . 2 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐹‘𝐶)‘(𝐼‘𝐶)) = (𝐶 ↑ (1...(𝐼‘𝐶)))) |
27 | 9 | simprd 496 | . 2 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0) |
28 | 22, 26, 27 | 3eqtr2d 2782 | 1 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐹‘(𝑅‘𝐶))‘(𝐼‘𝐶)) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ∀wral 3064 {crab 3407 ∖ cdif 3907 ∩ cin 3909 ifcif 4486 𝒫 cpw 4560 class class class wbr 5105 ↦ cmpt 5188 “ cima 5636 ‘cfv 6496 (class class class)co 7357 ∈ cmpo 7359 Fincfn 8883 infcinf 9377 ℝcr 11050 0cc0 11051 1c1 11052 + caddc 11054 < clt 11189 ≤ cle 11190 − cmin 11385 / cdiv 11812 ℕcn 12153 ℤcz 12499 ℤ≥cuz 12763 ...cfz 13424 ♯chash 14230 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-oadd 8416 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-sup 9378 df-inf 9379 df-dju 9837 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-n0 12414 df-z 12500 df-uz 12764 df-rp 12916 df-fz 13425 df-hash 14231 |
This theorem is referenced by: ballotlemrc 33130 ballotlemirc 33131 |
Copyright terms: Public domain | W3C validator |