| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemfrci | Structured version Visualization version GIF version | ||
| Description: Reverse counting preserves a tie at the first tie. (Contributed by Thierry Arnoux, 21-Apr-2017.) |
| Ref | Expression |
|---|---|
| ballotth.m | ⊢ 𝑀 ∈ ℕ |
| ballotth.n | ⊢ 𝑁 ∈ ℕ |
| ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
| ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
| ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
| ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
| ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
| ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
| ballotth.s | ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
| ballotth.r | ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
| ballotlemg | ⊢ ↑ = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣 ∩ 𝑢)) − (♯‘(𝑣 ∖ 𝑢)))) |
| Ref | Expression |
|---|---|
| ballotlemfrci | ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐹‘(𝑅‘𝐶))‘(𝐼‘𝐶)) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ballotth.m | . . . . . . 7 ⊢ 𝑀 ∈ ℕ | |
| 2 | ballotth.n | . . . . . . 7 ⊢ 𝑁 ∈ ℕ | |
| 3 | ballotth.o | . . . . . . 7 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
| 4 | ballotth.p | . . . . . . 7 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
| 5 | ballotth.f | . . . . . . 7 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
| 6 | ballotth.e | . . . . . . 7 ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | |
| 7 | ballotth.mgtn | . . . . . . 7 ⊢ 𝑁 < 𝑀 | |
| 8 | ballotth.i | . . . . . . 7 ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | ballotlemiex 34504 | . . . . . 6 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0)) |
| 10 | 9 | simpld 494 | . . . . 5 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁))) |
| 11 | elfzuz 13560 | . . . . 5 ⊢ ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼‘𝐶) ∈ (ℤ≥‘1)) | |
| 12 | eluzfz2 13572 | . . . . 5 ⊢ ((𝐼‘𝐶) ∈ (ℤ≥‘1) → (𝐼‘𝐶) ∈ (1...(𝐼‘𝐶))) | |
| 13 | 10, 11, 12 | 3syl 18 | . . . 4 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ (1...(𝐼‘𝐶))) |
| 14 | ballotth.s | . . . . 5 ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) | |
| 15 | ballotth.r | . . . . 5 ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) | |
| 16 | ballotlemg | . . . . 5 ⊢ ↑ = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣 ∩ 𝑢)) − (♯‘(𝑣 ∖ 𝑢)))) | |
| 17 | 1, 2, 3, 4, 5, 6, 7, 8, 14, 15, 16 | ballotlemfrc 34529 | . . . 4 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (𝐼‘𝐶) ∈ (1...(𝐼‘𝐶))) → ((𝐹‘(𝑅‘𝐶))‘(𝐼‘𝐶)) = (𝐶 ↑ (((𝑆‘𝐶)‘(𝐼‘𝐶))...(𝐼‘𝐶)))) |
| 18 | 13, 17 | mpdan 687 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐹‘(𝑅‘𝐶))‘(𝐼‘𝐶)) = (𝐶 ↑ (((𝑆‘𝐶)‘(𝐼‘𝐶))...(𝐼‘𝐶)))) |
| 19 | 1, 2, 3, 4, 5, 6, 7, 8, 14 | ballotlemsi 34517 | . . . . 5 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝑆‘𝐶)‘(𝐼‘𝐶)) = 1) |
| 20 | 19 | oveq1d 7446 | . . . 4 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (((𝑆‘𝐶)‘(𝐼‘𝐶))...(𝐼‘𝐶)) = (1...(𝐼‘𝐶))) |
| 21 | 20 | oveq2d 7447 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐶 ↑ (((𝑆‘𝐶)‘(𝐼‘𝐶))...(𝐼‘𝐶))) = (𝐶 ↑ (1...(𝐼‘𝐶)))) |
| 22 | 18, 21 | eqtrd 2777 | . 2 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐹‘(𝑅‘𝐶))‘(𝐼‘𝐶)) = (𝐶 ↑ (1...(𝐼‘𝐶)))) |
| 23 | fz1ssfz0 13663 | . . . 4 ⊢ (1...(𝑀 + 𝑁)) ⊆ (0...(𝑀 + 𝑁)) | |
| 24 | 23, 10 | sselid 3981 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ (0...(𝑀 + 𝑁))) |
| 25 | 1, 2, 3, 4, 5, 6, 7, 8, 14, 15, 16 | ballotlemfg 34528 | . . 3 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (𝐼‘𝐶) ∈ (0...(𝑀 + 𝑁))) → ((𝐹‘𝐶)‘(𝐼‘𝐶)) = (𝐶 ↑ (1...(𝐼‘𝐶)))) |
| 26 | 24, 25 | mpdan 687 | . 2 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐹‘𝐶)‘(𝐼‘𝐶)) = (𝐶 ↑ (1...(𝐼‘𝐶)))) |
| 27 | 9 | simprd 495 | . 2 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0) |
| 28 | 22, 26, 27 | 3eqtr2d 2783 | 1 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐹‘(𝑅‘𝐶))‘(𝐼‘𝐶)) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∀wral 3061 {crab 3436 ∖ cdif 3948 ∩ cin 3950 ifcif 4525 𝒫 cpw 4600 class class class wbr 5143 ↦ cmpt 5225 “ cima 5688 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 Fincfn 8985 infcinf 9481 ℝcr 11154 0cc0 11155 1c1 11156 + caddc 11158 < clt 11295 ≤ cle 11296 − cmin 11492 / cdiv 11920 ℕcn 12266 ℤcz 12613 ℤ≥cuz 12878 ...cfz 13547 ♯chash 14369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-oadd 8510 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-inf 9483 df-dju 9941 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-fz 13548 df-hash 14370 |
| This theorem is referenced by: ballotlemrc 34533 ballotlemirc 34534 |
| Copyright terms: Public domain | W3C validator |