MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatval3 Structured version   Visualization version   GIF version

Theorem ccatval3 13924
Description: Value of a symbol in the right half of a concatenated word, using an index relative to the subword. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Proof shortened by AV, 30-Apr-2020.)
Assertion
Ref Expression
ccatval3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ (0..^(♯‘𝑇))) → ((𝑆 ++ 𝑇)‘(𝐼 + (♯‘𝑆))) = (𝑇𝐼))

Proof of Theorem ccatval3
StepHypRef Expression
1 lencl 13876 . . . . . . 7 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℕ0)
21nn0zd 12073 . . . . . 6 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℤ)
32anim1ci 618 . . . . 5 ((𝑆 ∈ Word 𝐵𝐼 ∈ (0..^(♯‘𝑇))) → (𝐼 ∈ (0..^(♯‘𝑇)) ∧ (♯‘𝑆) ∈ ℤ))
433adant2 1128 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ (0..^(♯‘𝑇))) → (𝐼 ∈ (0..^(♯‘𝑇)) ∧ (♯‘𝑆) ∈ ℤ))
5 fzo0addelr 13087 . . . 4 ((𝐼 ∈ (0..^(♯‘𝑇)) ∧ (♯‘𝑆) ∈ ℤ) → (𝐼 + (♯‘𝑆)) ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))))
64, 5syl 17 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ (0..^(♯‘𝑇))) → (𝐼 + (♯‘𝑆)) ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))))
7 ccatval2 13923 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵 ∧ (𝐼 + (♯‘𝑆)) ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘(𝐼 + (♯‘𝑆))) = (𝑇‘((𝐼 + (♯‘𝑆)) − (♯‘𝑆))))
86, 7syld3an3 1406 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ (0..^(♯‘𝑇))) → ((𝑆 ++ 𝑇)‘(𝐼 + (♯‘𝑆))) = (𝑇‘((𝐼 + (♯‘𝑆)) − (♯‘𝑆))))
9 elfzoelz 13033 . . . . . 6 (𝐼 ∈ (0..^(♯‘𝑇)) → 𝐼 ∈ ℤ)
1093ad2ant3 1132 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ (0..^(♯‘𝑇))) → 𝐼 ∈ ℤ)
1110zcnd 12076 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ (0..^(♯‘𝑇))) → 𝐼 ∈ ℂ)
1213ad2ant1 1130 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ (0..^(♯‘𝑇))) → (♯‘𝑆) ∈ ℕ0)
1312nn0cnd 11945 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ (0..^(♯‘𝑇))) → (♯‘𝑆) ∈ ℂ)
1411, 13pncand 10987 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ (0..^(♯‘𝑇))) → ((𝐼 + (♯‘𝑆)) − (♯‘𝑆)) = 𝐼)
1514fveq2d 6649 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ (0..^(♯‘𝑇))) → (𝑇‘((𝐼 + (♯‘𝑆)) − (♯‘𝑆))) = (𝑇𝐼))
168, 15eqtrd 2833 1 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ (0..^(♯‘𝑇))) → ((𝑆 ++ 𝑇)‘(𝐼 + (♯‘𝑆))) = (𝑇𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  cfv 6324  (class class class)co 7135  0cc0 10526   + caddc 10529  cmin 10859  0cn0 11885  cz 11969  ..^cfzo 13028  chash 13686  Word cword 13857   ++ cconcat 13913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-concat 13914
This theorem is referenced by:  ccatrn  13934  swrdccat2  14022  cats1un  14074  splfv2a  14109  revccat  14119  cats1fvn  14211  gsumsgrpccat  17996  gsumccatOLD  17997  efgsval2  18851  efgsp1  18855  pgpfaclem1  19196  2clwwlk2clwwlk  28135  splfv3  30658  lpadright  32065
  Copyright terms: Public domain W3C validator