MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatval3 Structured version   Visualization version   GIF version

Theorem ccatval3 14614
Description: Value of a symbol in the right half of a concatenated word, using an index relative to the subword. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Proof shortened by AV, 30-Apr-2020.)
Assertion
Ref Expression
ccatval3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ (0..^(♯‘𝑇))) → ((𝑆 ++ 𝑇)‘(𝐼 + (♯‘𝑆))) = (𝑇𝐼))

Proof of Theorem ccatval3
StepHypRef Expression
1 lencl 14568 . . . . . . 7 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℕ0)
21nn0zd 12637 . . . . . 6 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℤ)
32anim1ci 616 . . . . 5 ((𝑆 ∈ Word 𝐵𝐼 ∈ (0..^(♯‘𝑇))) → (𝐼 ∈ (0..^(♯‘𝑇)) ∧ (♯‘𝑆) ∈ ℤ))
433adant2 1130 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ (0..^(♯‘𝑇))) → (𝐼 ∈ (0..^(♯‘𝑇)) ∧ (♯‘𝑆) ∈ ℤ))
5 fzo0addelr 13755 . . . 4 ((𝐼 ∈ (0..^(♯‘𝑇)) ∧ (♯‘𝑆) ∈ ℤ) → (𝐼 + (♯‘𝑆)) ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))))
64, 5syl 17 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ (0..^(♯‘𝑇))) → (𝐼 + (♯‘𝑆)) ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))))
7 ccatval2 14613 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵 ∧ (𝐼 + (♯‘𝑆)) ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘(𝐼 + (♯‘𝑆))) = (𝑇‘((𝐼 + (♯‘𝑆)) − (♯‘𝑆))))
86, 7syld3an3 1408 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ (0..^(♯‘𝑇))) → ((𝑆 ++ 𝑇)‘(𝐼 + (♯‘𝑆))) = (𝑇‘((𝐼 + (♯‘𝑆)) − (♯‘𝑆))))
9 elfzoelz 13696 . . . . . 6 (𝐼 ∈ (0..^(♯‘𝑇)) → 𝐼 ∈ ℤ)
1093ad2ant3 1134 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ (0..^(♯‘𝑇))) → 𝐼 ∈ ℤ)
1110zcnd 12721 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ (0..^(♯‘𝑇))) → 𝐼 ∈ ℂ)
1213ad2ant1 1132 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ (0..^(♯‘𝑇))) → (♯‘𝑆) ∈ ℕ0)
1312nn0cnd 12587 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ (0..^(♯‘𝑇))) → (♯‘𝑆) ∈ ℂ)
1411, 13pncand 11619 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ (0..^(♯‘𝑇))) → ((𝐼 + (♯‘𝑆)) − (♯‘𝑆)) = 𝐼)
1514fveq2d 6911 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ (0..^(♯‘𝑇))) → (𝑇‘((𝐼 + (♯‘𝑆)) − (♯‘𝑆))) = (𝑇𝐼))
168, 15eqtrd 2775 1 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ (0..^(♯‘𝑇))) → ((𝑆 ++ 𝑇)‘(𝐼 + (♯‘𝑆))) = (𝑇𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  0cc0 11153   + caddc 11156  cmin 11490  0cn0 12524  cz 12611  ..^cfzo 13691  chash 14366  Word cword 14549   ++ cconcat 14605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-concat 14606
This theorem is referenced by:  ccatrn  14624  swrdccat2  14704  cats1un  14756  splfv2a  14791  revccat  14801  cats1fvn  14894  gsumsgrpccat  18866  efgsval2  19766  efgsp1  19770  pgpfaclem1  20116  2clwwlk2clwwlk  30379  splfv3  32928  lpadright  34678
  Copyright terms: Public domain W3C validator