![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pfxlswccat | Structured version Visualization version GIF version |
Description: Reconstruct a nonempty word from its prefix and last symbol. (Contributed by Alexander van der Vekens, 5-Aug-2018.) (Revised by AV, 9-May-2020.) |
Ref | Expression |
---|---|
pfxlswccat | β’ ((π β Word π β§ π β β ) β ((π prefix ((β―βπ) β 1)) ++ β¨β(lastSβπ)ββ©) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | swrdlsw 14623 | . . . 4 β’ ((π β Word π β§ π β β ) β (π substr β¨((β―βπ) β 1), (β―βπ)β©) = β¨β(lastSβπ)ββ©) | |
2 | 1 | eqcomd 2732 | . . 3 β’ ((π β Word π β§ π β β ) β β¨β(lastSβπ)ββ© = (π substr β¨((β―βπ) β 1), (β―βπ)β©)) |
3 | 2 | oveq2d 7421 | . 2 β’ ((π β Word π β§ π β β ) β ((π prefix ((β―βπ) β 1)) ++ β¨β(lastSβπ)ββ©) = ((π prefix ((β―βπ) β 1)) ++ (π substr β¨((β―βπ) β 1), (β―βπ)β©))) |
4 | wrdfin 14488 | . . . . 5 β’ (π β Word π β π β Fin) | |
5 | 1elfz0hash 14355 | . . . . 5 β’ ((π β Fin β§ π β β ) β 1 β (0...(β―βπ))) | |
6 | 4, 5 | sylan 579 | . . . 4 β’ ((π β Word π β§ π β β ) β 1 β (0...(β―βπ))) |
7 | fznn0sub2 13614 | . . . 4 β’ (1 β (0...(β―βπ)) β ((β―βπ) β 1) β (0...(β―βπ))) | |
8 | 6, 7 | syl 17 | . . 3 β’ ((π β Word π β§ π β β ) β ((β―βπ) β 1) β (0...(β―βπ))) |
9 | pfxcctswrd 14666 | . . 3 β’ ((π β Word π β§ ((β―βπ) β 1) β (0...(β―βπ))) β ((π prefix ((β―βπ) β 1)) ++ (π substr β¨((β―βπ) β 1), (β―βπ)β©)) = π) | |
10 | 8, 9 | syldan 590 | . 2 β’ ((π β Word π β§ π β β ) β ((π prefix ((β―βπ) β 1)) ++ (π substr β¨((β―βπ) β 1), (β―βπ)β©)) = π) |
11 | 3, 10 | eqtrd 2766 | 1 β’ ((π β Word π β§ π β β ) β ((π prefix ((β―βπ) β 1)) ++ β¨β(lastSβπ)ββ©) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 β wne 2934 β c0 4317 β¨cop 4629 βcfv 6537 (class class class)co 7405 Fincfn 8941 0cc0 11112 1c1 11113 β cmin 11448 ...cfz 13490 β―chash 14295 Word cword 14470 lastSclsw 14518 ++ cconcat 14526 β¨βcs1 14551 substr csubstr 14596 prefix cpfx 14626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-xnn0 12549 df-z 12563 df-uz 12827 df-fz 13491 df-fzo 13634 df-hash 14296 df-word 14471 df-lsw 14519 df-concat 14527 df-s1 14552 df-substr 14597 df-pfx 14627 |
This theorem is referenced by: ccats1pfxeq 14670 wrdind 14678 wrd2ind 14679 psgnunilem5 19414 wwlksnextwrd 29660 pfxlsw2ccat 32621 iwrdsplit 33916 signsvtn0 34111 signstfveq0 34118 |
Copyright terms: Public domain | W3C validator |