| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pfxlswccat | Structured version Visualization version GIF version | ||
| Description: Reconstruct a nonempty word from its prefix and last symbol. (Contributed by Alexander van der Vekens, 5-Aug-2018.) (Revised by AV, 9-May-2020.) |
| Ref | Expression |
|---|---|
| pfxlswccat | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ 〈“(lastS‘𝑊)”〉) = 𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swrdlsw 14570 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (𝑊 substr 〈((♯‘𝑊) − 1), (♯‘𝑊)〉) = 〈“(lastS‘𝑊)”〉) | |
| 2 | 1 | eqcomd 2737 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → 〈“(lastS‘𝑊)”〉 = (𝑊 substr 〈((♯‘𝑊) − 1), (♯‘𝑊)〉)) |
| 3 | 2 | oveq2d 7357 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ 〈“(lastS‘𝑊)”〉) = ((𝑊 prefix ((♯‘𝑊) − 1)) ++ (𝑊 substr 〈((♯‘𝑊) − 1), (♯‘𝑊)〉))) |
| 4 | wrdfin 14434 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → 𝑊 ∈ Fin) | |
| 5 | 1elfz0hash 14292 | . . . . 5 ⊢ ((𝑊 ∈ Fin ∧ 𝑊 ≠ ∅) → 1 ∈ (0...(♯‘𝑊))) | |
| 6 | 4, 5 | sylan 580 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → 1 ∈ (0...(♯‘𝑊))) |
| 7 | fznn0sub2 13530 | . . . 4 ⊢ (1 ∈ (0...(♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊))) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊))) |
| 9 | pfxcctswrd 14612 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊))) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ (𝑊 substr 〈((♯‘𝑊) − 1), (♯‘𝑊)〉)) = 𝑊) | |
| 10 | 8, 9 | syldan 591 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ (𝑊 substr 〈((♯‘𝑊) − 1), (♯‘𝑊)〉)) = 𝑊) |
| 11 | 3, 10 | eqtrd 2766 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ 〈“(lastS‘𝑊)”〉) = 𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∅c0 4278 〈cop 4577 ‘cfv 6476 (class class class)co 7341 Fincfn 8864 0cc0 11001 1c1 11002 − cmin 11339 ...cfz 13402 ♯chash 14232 Word cword 14415 lastSclsw 14464 ++ cconcat 14472 〈“cs1 14498 substr csubstr 14543 prefix cpfx 14573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-n0 12377 df-xnn0 12450 df-z 12464 df-uz 12728 df-fz 13403 df-fzo 13550 df-hash 14233 df-word 14416 df-lsw 14465 df-concat 14473 df-s1 14499 df-substr 14544 df-pfx 14574 |
| This theorem is referenced by: ccats1pfxeq 14616 wrdind 14624 wrd2ind 14625 psgnunilem5 19401 wwlksnextwrd 29870 pfxlsw2ccat 32923 wrdpmtrlast 33054 iwrdsplit 34392 signsvtn0 34575 signstfveq0 34582 |
| Copyright terms: Public domain | W3C validator |