| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pfxlswccat | Structured version Visualization version GIF version | ||
| Description: Reconstruct a nonempty word from its prefix and last symbol. (Contributed by Alexander van der Vekens, 5-Aug-2018.) (Revised by AV, 9-May-2020.) |
| Ref | Expression |
|---|---|
| pfxlswccat | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ 〈“(lastS‘𝑊)”〉) = 𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swrdlsw 14685 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (𝑊 substr 〈((♯‘𝑊) − 1), (♯‘𝑊)〉) = 〈“(lastS‘𝑊)”〉) | |
| 2 | 1 | eqcomd 2741 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → 〈“(lastS‘𝑊)”〉 = (𝑊 substr 〈((♯‘𝑊) − 1), (♯‘𝑊)〉)) |
| 3 | 2 | oveq2d 7421 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ 〈“(lastS‘𝑊)”〉) = ((𝑊 prefix ((♯‘𝑊) − 1)) ++ (𝑊 substr 〈((♯‘𝑊) − 1), (♯‘𝑊)〉))) |
| 4 | wrdfin 14550 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → 𝑊 ∈ Fin) | |
| 5 | 1elfz0hash 14408 | . . . . 5 ⊢ ((𝑊 ∈ Fin ∧ 𝑊 ≠ ∅) → 1 ∈ (0...(♯‘𝑊))) | |
| 6 | 4, 5 | sylan 580 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → 1 ∈ (0...(♯‘𝑊))) |
| 7 | fznn0sub2 13652 | . . . 4 ⊢ (1 ∈ (0...(♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊))) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊))) |
| 9 | pfxcctswrd 14728 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊))) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ (𝑊 substr 〈((♯‘𝑊) − 1), (♯‘𝑊)〉)) = 𝑊) | |
| 10 | 8, 9 | syldan 591 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ (𝑊 substr 〈((♯‘𝑊) − 1), (♯‘𝑊)〉)) = 𝑊) |
| 11 | 3, 10 | eqtrd 2770 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ 〈“(lastS‘𝑊)”〉) = 𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∅c0 4308 〈cop 4607 ‘cfv 6531 (class class class)co 7405 Fincfn 8959 0cc0 11129 1c1 11130 − cmin 11466 ...cfz 13524 ♯chash 14348 Word cword 14531 lastSclsw 14580 ++ cconcat 14588 〈“cs1 14613 substr csubstr 14658 prefix cpfx 14688 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-xnn0 12575 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 df-hash 14349 df-word 14532 df-lsw 14581 df-concat 14589 df-s1 14614 df-substr 14659 df-pfx 14689 |
| This theorem is referenced by: ccats1pfxeq 14732 wrdind 14740 wrd2ind 14741 psgnunilem5 19475 wwlksnextwrd 29879 pfxlsw2ccat 32926 wrdpmtrlast 33104 iwrdsplit 34419 signsvtn0 34602 signstfveq0 34609 |
| Copyright terms: Public domain | W3C validator |