Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pfxlswccat | Structured version Visualization version GIF version |
Description: Reconstruct a nonempty word from its prefix and last symbol. (Contributed by Alexander van der Vekens, 5-Aug-2018.) (Revised by AV, 9-May-2020.) |
Ref | Expression |
---|---|
pfxlswccat | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ 〈“(lastS‘𝑊)”〉) = 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | swrdlsw 14376 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (𝑊 substr 〈((♯‘𝑊) − 1), (♯‘𝑊)〉) = 〈“(lastS‘𝑊)”〉) | |
2 | 1 | eqcomd 2746 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → 〈“(lastS‘𝑊)”〉 = (𝑊 substr 〈((♯‘𝑊) − 1), (♯‘𝑊)〉)) |
3 | 2 | oveq2d 7285 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ 〈“(lastS‘𝑊)”〉) = ((𝑊 prefix ((♯‘𝑊) − 1)) ++ (𝑊 substr 〈((♯‘𝑊) − 1), (♯‘𝑊)〉))) |
4 | wrdfin 14231 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → 𝑊 ∈ Fin) | |
5 | 1elfz0hash 14101 | . . . . 5 ⊢ ((𝑊 ∈ Fin ∧ 𝑊 ≠ ∅) → 1 ∈ (0...(♯‘𝑊))) | |
6 | 4, 5 | sylan 580 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → 1 ∈ (0...(♯‘𝑊))) |
7 | fznn0sub2 13360 | . . . 4 ⊢ (1 ∈ (0...(♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊))) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊))) |
9 | pfxcctswrd 14419 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊))) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ (𝑊 substr 〈((♯‘𝑊) − 1), (♯‘𝑊)〉)) = 𝑊) | |
10 | 8, 9 | syldan 591 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ (𝑊 substr 〈((♯‘𝑊) − 1), (♯‘𝑊)〉)) = 𝑊) |
11 | 3, 10 | eqtrd 2780 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ 〈“(lastS‘𝑊)”〉) = 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 ∅c0 4262 〈cop 4573 ‘cfv 6431 (class class class)co 7269 Fincfn 8714 0cc0 10870 1c1 10871 − cmin 11203 ...cfz 13236 ♯chash 14040 Word cword 14213 lastSclsw 14261 ++ cconcat 14269 〈“cs1 14296 substr csubstr 14349 prefix cpfx 14379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10926 ax-resscn 10927 ax-1cn 10928 ax-icn 10929 ax-addcl 10930 ax-addrcl 10931 ax-mulcl 10932 ax-mulrcl 10933 ax-mulcom 10934 ax-addass 10935 ax-mulass 10936 ax-distr 10937 ax-i2m1 10938 ax-1ne0 10939 ax-1rid 10940 ax-rnegex 10941 ax-rrecex 10942 ax-cnre 10943 ax-pre-lttri 10944 ax-pre-lttrn 10945 ax-pre-ltadd 10946 ax-pre-mulgt0 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7705 df-1st 7822 df-2nd 7823 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-1o 8286 df-er 8479 df-en 8715 df-dom 8716 df-sdom 8717 df-fin 8718 df-card 9696 df-pnf 11010 df-mnf 11011 df-xr 11012 df-ltxr 11013 df-le 11014 df-sub 11205 df-neg 11206 df-nn 11972 df-n0 12232 df-xnn0 12304 df-z 12318 df-uz 12580 df-fz 13237 df-fzo 13380 df-hash 14041 df-word 14214 df-lsw 14262 df-concat 14270 df-s1 14297 df-substr 14350 df-pfx 14380 |
This theorem is referenced by: ccats1pfxeq 14423 wrdind 14431 wrd2ind 14432 psgnunilem5 19098 wwlksnextwrd 28256 pfxlsw2ccat 31218 iwrdsplit 32348 signsvtn0 32543 signstfveq0 32550 |
Copyright terms: Public domain | W3C validator |