| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ceildivmod | Structured version Visualization version GIF version | ||
| Description: Expressing the ceiling of a division by the modulo operator. (Contributed by AV, 7-Sep-2025.) |
| Ref | Expression |
|---|---|
| ceildivmod | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌈‘(𝐴 / 𝐵)) = ((𝐴 + ((𝐵 − 𝐴) mod 𝐵)) / 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rerpdivcl 12944 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) | |
| 2 | ceilval 13761 | . . 3 ⊢ ((𝐴 / 𝐵) ∈ ℝ → (⌈‘(𝐴 / 𝐵)) = -(⌊‘-(𝐴 / 𝐵))) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌈‘(𝐴 / 𝐵)) = -(⌊‘-(𝐴 / 𝐵))) |
| 4 | recn 11118 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 5 | 4 | adantr 480 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℂ) |
| 6 | rpcn 12923 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ) | |
| 7 | 6 | adantl 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℂ) |
| 8 | rpne0 12929 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ≠ 0) | |
| 9 | 8 | adantl 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ≠ 0) |
| 10 | 5, 7, 9 | divnegd 11932 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → -(𝐴 / 𝐵) = (-𝐴 / 𝐵)) |
| 11 | 10 | fveq2d 6830 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘-(𝐴 / 𝐵)) = (⌊‘(-𝐴 / 𝐵))) |
| 12 | renegcl 11446 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
| 13 | fldivmod 47342 | . . . . . 6 ⊢ ((-𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(-𝐴 / 𝐵)) = ((-𝐴 − (-𝐴 mod 𝐵)) / 𝐵)) | |
| 14 | 12, 13 | sylan 580 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(-𝐴 / 𝐵)) = ((-𝐴 − (-𝐴 mod 𝐵)) / 𝐵)) |
| 15 | 11, 14 | eqtrd 2764 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘-(𝐴 / 𝐵)) = ((-𝐴 − (-𝐴 mod 𝐵)) / 𝐵)) |
| 16 | 15 | negeqd 11376 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → -(⌊‘-(𝐴 / 𝐵)) = -((-𝐴 − (-𝐴 mod 𝐵)) / 𝐵)) |
| 17 | 12 | recnd 11162 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℂ) |
| 18 | 17 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → -𝐴 ∈ ℂ) |
| 19 | modcl 13796 | . . . . . . 7 ⊢ ((-𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (-𝐴 mod 𝐵) ∈ ℝ) | |
| 20 | 12, 19 | sylan 580 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (-𝐴 mod 𝐵) ∈ ℝ) |
| 21 | 20 | recnd 11162 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (-𝐴 mod 𝐵) ∈ ℂ) |
| 22 | 18, 21 | subcld 11494 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (-𝐴 − (-𝐴 mod 𝐵)) ∈ ℂ) |
| 23 | 22, 7, 9 | divnegd 11932 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → -((-𝐴 − (-𝐴 mod 𝐵)) / 𝐵) = (-(-𝐴 − (-𝐴 mod 𝐵)) / 𝐵)) |
| 24 | 16, 23 | eqtrd 2764 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → -(⌊‘-(𝐴 / 𝐵)) = (-(-𝐴 − (-𝐴 mod 𝐵)) / 𝐵)) |
| 25 | 18, 21 | negsubdid 11509 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → -(-𝐴 − (-𝐴 mod 𝐵)) = (--𝐴 + (-𝐴 mod 𝐵))) |
| 26 | 4 | negnegd 11485 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → --𝐴 = 𝐴) |
| 27 | 26 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → --𝐴 = 𝐴) |
| 28 | 27 | oveq1d 7368 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (--𝐴 + (-𝐴 mod 𝐵)) = (𝐴 + (-𝐴 mod 𝐵))) |
| 29 | negmod 13842 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (-𝐴 mod 𝐵) = ((𝐵 − 𝐴) mod 𝐵)) | |
| 30 | 29 | oveq2d 7369 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 + (-𝐴 mod 𝐵)) = (𝐴 + ((𝐵 − 𝐴) mod 𝐵))) |
| 31 | 25, 28, 30 | 3eqtrd 2768 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → -(-𝐴 − (-𝐴 mod 𝐵)) = (𝐴 + ((𝐵 − 𝐴) mod 𝐵))) |
| 32 | 31 | oveq1d 7368 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (-(-𝐴 − (-𝐴 mod 𝐵)) / 𝐵) = ((𝐴 + ((𝐵 − 𝐴) mod 𝐵)) / 𝐵)) |
| 33 | 3, 24, 32 | 3eqtrd 2768 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌈‘(𝐴 / 𝐵)) = ((𝐴 + ((𝐵 − 𝐴) mod 𝐵)) / 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 ℝcr 11027 0cc0 11028 + caddc 11031 − cmin 11366 -cneg 11367 / cdiv 11796 ℝ+crp 12912 ⌊cfl 13713 ⌈cceil 13714 mod cmo 13792 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-n0 12404 df-z 12491 df-uz 12755 df-rp 12913 df-fl 13715 df-ceil 13716 df-mod 13793 |
| This theorem is referenced by: ceil5half3 47344 |
| Copyright terms: Public domain | W3C validator |