![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ceildivmod | Structured version Visualization version GIF version |
Description: Expressing the ceiling of a division by the modulo operator. (Contributed by AV, 7-Sep-2025.) |
Ref | Expression |
---|---|
ceildivmod | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌈‘(𝐴 / 𝐵)) = ((𝐴 + ((𝐵 − 𝐴) mod 𝐵)) / 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rerpdivcl 13061 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) | |
2 | ceilval 13874 | . . 3 ⊢ ((𝐴 / 𝐵) ∈ ℝ → (⌈‘(𝐴 / 𝐵)) = -(⌊‘-(𝐴 / 𝐵))) | |
3 | 1, 2 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌈‘(𝐴 / 𝐵)) = -(⌊‘-(𝐴 / 𝐵))) |
4 | recn 11241 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
5 | 4 | adantr 480 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℂ) |
6 | rpcn 13041 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ) | |
7 | 6 | adantl 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℂ) |
8 | rpne0 13047 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ≠ 0) | |
9 | 8 | adantl 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ≠ 0) |
10 | 5, 7, 9 | divnegd 12052 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → -(𝐴 / 𝐵) = (-𝐴 / 𝐵)) |
11 | 10 | fveq2d 6908 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘-(𝐴 / 𝐵)) = (⌊‘(-𝐴 / 𝐵))) |
12 | renegcl 11568 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
13 | fldivmod 47313 | . . . . . 6 ⊢ ((-𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(-𝐴 / 𝐵)) = ((-𝐴 − (-𝐴 mod 𝐵)) / 𝐵)) | |
14 | 12, 13 | sylan 580 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(-𝐴 / 𝐵)) = ((-𝐴 − (-𝐴 mod 𝐵)) / 𝐵)) |
15 | 11, 14 | eqtrd 2776 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘-(𝐴 / 𝐵)) = ((-𝐴 − (-𝐴 mod 𝐵)) / 𝐵)) |
16 | 15 | negeqd 11498 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → -(⌊‘-(𝐴 / 𝐵)) = -((-𝐴 − (-𝐴 mod 𝐵)) / 𝐵)) |
17 | 12 | recnd 11285 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℂ) |
18 | 17 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → -𝐴 ∈ ℂ) |
19 | modcl 13909 | . . . . . . 7 ⊢ ((-𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (-𝐴 mod 𝐵) ∈ ℝ) | |
20 | 12, 19 | sylan 580 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (-𝐴 mod 𝐵) ∈ ℝ) |
21 | 20 | recnd 11285 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (-𝐴 mod 𝐵) ∈ ℂ) |
22 | 18, 21 | subcld 11616 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (-𝐴 − (-𝐴 mod 𝐵)) ∈ ℂ) |
23 | 22, 7, 9 | divnegd 12052 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → -((-𝐴 − (-𝐴 mod 𝐵)) / 𝐵) = (-(-𝐴 − (-𝐴 mod 𝐵)) / 𝐵)) |
24 | 16, 23 | eqtrd 2776 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → -(⌊‘-(𝐴 / 𝐵)) = (-(-𝐴 − (-𝐴 mod 𝐵)) / 𝐵)) |
25 | 18, 21 | negsubdid 11631 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → -(-𝐴 − (-𝐴 mod 𝐵)) = (--𝐴 + (-𝐴 mod 𝐵))) |
26 | 4 | negnegd 11607 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → --𝐴 = 𝐴) |
27 | 26 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → --𝐴 = 𝐴) |
28 | 27 | oveq1d 7444 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (--𝐴 + (-𝐴 mod 𝐵)) = (𝐴 + (-𝐴 mod 𝐵))) |
29 | negmod 13953 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (-𝐴 mod 𝐵) = ((𝐵 − 𝐴) mod 𝐵)) | |
30 | 29 | oveq2d 7445 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 + (-𝐴 mod 𝐵)) = (𝐴 + ((𝐵 − 𝐴) mod 𝐵))) |
31 | 25, 28, 30 | 3eqtrd 2780 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → -(-𝐴 − (-𝐴 mod 𝐵)) = (𝐴 + ((𝐵 − 𝐴) mod 𝐵))) |
32 | 31 | oveq1d 7444 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (-(-𝐴 − (-𝐴 mod 𝐵)) / 𝐵) = ((𝐴 + ((𝐵 − 𝐴) mod 𝐵)) / 𝐵)) |
33 | 3, 24, 32 | 3eqtrd 2780 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌈‘(𝐴 / 𝐵)) = ((𝐴 + ((𝐵 − 𝐴) mod 𝐵)) / 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2939 ‘cfv 6559 (class class class)co 7429 ℂcc 11149 ℝcr 11150 0cc0 11151 + caddc 11154 − cmin 11488 -cneg 11489 / cdiv 11916 ℝ+crp 13030 ⌊cfl 13826 ⌈cceil 13827 mod cmo 13905 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-cnex 11207 ax-resscn 11208 ax-1cn 11209 ax-icn 11210 ax-addcl 11211 ax-addrcl 11212 ax-mulcl 11213 ax-mulrcl 11214 ax-mulcom 11215 ax-addass 11216 ax-mulass 11217 ax-distr 11218 ax-i2m1 11219 ax-1ne0 11220 ax-1rid 11221 ax-rnegex 11222 ax-rrecex 11223 ax-cnre 11224 ax-pre-lttri 11225 ax-pre-lttrn 11226 ax-pre-ltadd 11227 ax-pre-mulgt0 11228 ax-pre-sup 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-tr 5258 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6319 df-ord 6385 df-on 6386 df-lim 6387 df-suc 6388 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-om 7884 df-2nd 8011 df-frecs 8302 df-wrecs 8333 df-recs 8407 df-rdg 8446 df-er 8741 df-en 8982 df-dom 8983 df-sdom 8984 df-sup 9478 df-inf 9479 df-pnf 11293 df-mnf 11294 df-xr 11295 df-ltxr 11296 df-le 11297 df-sub 11490 df-neg 11491 df-div 11917 df-nn 12263 df-n0 12523 df-z 12610 df-uz 12875 df-rp 13031 df-fl 13828 df-ceil 13829 df-mod 13906 |
This theorem is referenced by: ceil5half3 47315 |
Copyright terms: Public domain | W3C validator |