| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ceildivmod | Structured version Visualization version GIF version | ||
| Description: Expressing the ceiling of a division by the modulo operator. (Contributed by AV, 7-Sep-2025.) |
| Ref | Expression |
|---|---|
| ceildivmod | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌈‘(𝐴 / 𝐵)) = ((𝐴 + ((𝐵 − 𝐴) mod 𝐵)) / 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rerpdivcl 12989 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) | |
| 2 | ceilval 13806 | . . 3 ⊢ ((𝐴 / 𝐵) ∈ ℝ → (⌈‘(𝐴 / 𝐵)) = -(⌊‘-(𝐴 / 𝐵))) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌈‘(𝐴 / 𝐵)) = -(⌊‘-(𝐴 / 𝐵))) |
| 4 | recn 11164 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 5 | 4 | adantr 480 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℂ) |
| 6 | rpcn 12968 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ) | |
| 7 | 6 | adantl 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℂ) |
| 8 | rpne0 12974 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ≠ 0) | |
| 9 | 8 | adantl 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ≠ 0) |
| 10 | 5, 7, 9 | divnegd 11977 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → -(𝐴 / 𝐵) = (-𝐴 / 𝐵)) |
| 11 | 10 | fveq2d 6864 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘-(𝐴 / 𝐵)) = (⌊‘(-𝐴 / 𝐵))) |
| 12 | renegcl 11491 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
| 13 | fldivmod 47329 | . . . . . 6 ⊢ ((-𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(-𝐴 / 𝐵)) = ((-𝐴 − (-𝐴 mod 𝐵)) / 𝐵)) | |
| 14 | 12, 13 | sylan 580 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(-𝐴 / 𝐵)) = ((-𝐴 − (-𝐴 mod 𝐵)) / 𝐵)) |
| 15 | 11, 14 | eqtrd 2765 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘-(𝐴 / 𝐵)) = ((-𝐴 − (-𝐴 mod 𝐵)) / 𝐵)) |
| 16 | 15 | negeqd 11421 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → -(⌊‘-(𝐴 / 𝐵)) = -((-𝐴 − (-𝐴 mod 𝐵)) / 𝐵)) |
| 17 | 12 | recnd 11208 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℂ) |
| 18 | 17 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → -𝐴 ∈ ℂ) |
| 19 | modcl 13841 | . . . . . . 7 ⊢ ((-𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (-𝐴 mod 𝐵) ∈ ℝ) | |
| 20 | 12, 19 | sylan 580 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (-𝐴 mod 𝐵) ∈ ℝ) |
| 21 | 20 | recnd 11208 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (-𝐴 mod 𝐵) ∈ ℂ) |
| 22 | 18, 21 | subcld 11539 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (-𝐴 − (-𝐴 mod 𝐵)) ∈ ℂ) |
| 23 | 22, 7, 9 | divnegd 11977 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → -((-𝐴 − (-𝐴 mod 𝐵)) / 𝐵) = (-(-𝐴 − (-𝐴 mod 𝐵)) / 𝐵)) |
| 24 | 16, 23 | eqtrd 2765 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → -(⌊‘-(𝐴 / 𝐵)) = (-(-𝐴 − (-𝐴 mod 𝐵)) / 𝐵)) |
| 25 | 18, 21 | negsubdid 11554 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → -(-𝐴 − (-𝐴 mod 𝐵)) = (--𝐴 + (-𝐴 mod 𝐵))) |
| 26 | 4 | negnegd 11530 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → --𝐴 = 𝐴) |
| 27 | 26 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → --𝐴 = 𝐴) |
| 28 | 27 | oveq1d 7404 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (--𝐴 + (-𝐴 mod 𝐵)) = (𝐴 + (-𝐴 mod 𝐵))) |
| 29 | negmod 13887 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (-𝐴 mod 𝐵) = ((𝐵 − 𝐴) mod 𝐵)) | |
| 30 | 29 | oveq2d 7405 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 + (-𝐴 mod 𝐵)) = (𝐴 + ((𝐵 − 𝐴) mod 𝐵))) |
| 31 | 25, 28, 30 | 3eqtrd 2769 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → -(-𝐴 − (-𝐴 mod 𝐵)) = (𝐴 + ((𝐵 − 𝐴) mod 𝐵))) |
| 32 | 31 | oveq1d 7404 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (-(-𝐴 − (-𝐴 mod 𝐵)) / 𝐵) = ((𝐴 + ((𝐵 − 𝐴) mod 𝐵)) / 𝐵)) |
| 33 | 3, 24, 32 | 3eqtrd 2769 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌈‘(𝐴 / 𝐵)) = ((𝐴 + ((𝐵 − 𝐴) mod 𝐵)) / 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ‘cfv 6513 (class class class)co 7389 ℂcc 11072 ℝcr 11073 0cc0 11074 + caddc 11077 − cmin 11411 -cneg 11412 / cdiv 11841 ℝ+crp 12957 ⌊cfl 13758 ⌈cceil 13759 mod cmo 13837 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-sup 9399 df-inf 9400 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-n0 12449 df-z 12536 df-uz 12800 df-rp 12958 df-fl 13760 df-ceil 13761 df-mod 13838 |
| This theorem is referenced by: ceil5half3 47331 |
| Copyright terms: Public domain | W3C validator |