| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ceildivmod | Structured version Visualization version GIF version | ||
| Description: Expressing the ceiling of a division by the modulo operator. (Contributed by AV, 7-Sep-2025.) |
| Ref | Expression |
|---|---|
| ceildivmod | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌈‘(𝐴 / 𝐵)) = ((𝐴 + ((𝐵 − 𝐴) mod 𝐵)) / 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rerpdivcl 13047 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) | |
| 2 | ceilval 13860 | . . 3 ⊢ ((𝐴 / 𝐵) ∈ ℝ → (⌈‘(𝐴 / 𝐵)) = -(⌊‘-(𝐴 / 𝐵))) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌈‘(𝐴 / 𝐵)) = -(⌊‘-(𝐴 / 𝐵))) |
| 4 | recn 11227 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 5 | 4 | adantr 480 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℂ) |
| 6 | rpcn 13027 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ) | |
| 7 | 6 | adantl 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℂ) |
| 8 | rpne0 13033 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ≠ 0) | |
| 9 | 8 | adantl 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ≠ 0) |
| 10 | 5, 7, 9 | divnegd 12038 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → -(𝐴 / 𝐵) = (-𝐴 / 𝐵)) |
| 11 | 10 | fveq2d 6890 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘-(𝐴 / 𝐵)) = (⌊‘(-𝐴 / 𝐵))) |
| 12 | renegcl 11554 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
| 13 | fldivmod 47313 | . . . . . 6 ⊢ ((-𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(-𝐴 / 𝐵)) = ((-𝐴 − (-𝐴 mod 𝐵)) / 𝐵)) | |
| 14 | 12, 13 | sylan 580 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(-𝐴 / 𝐵)) = ((-𝐴 − (-𝐴 mod 𝐵)) / 𝐵)) |
| 15 | 11, 14 | eqtrd 2769 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘-(𝐴 / 𝐵)) = ((-𝐴 − (-𝐴 mod 𝐵)) / 𝐵)) |
| 16 | 15 | negeqd 11484 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → -(⌊‘-(𝐴 / 𝐵)) = -((-𝐴 − (-𝐴 mod 𝐵)) / 𝐵)) |
| 17 | 12 | recnd 11271 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℂ) |
| 18 | 17 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → -𝐴 ∈ ℂ) |
| 19 | modcl 13895 | . . . . . . 7 ⊢ ((-𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (-𝐴 mod 𝐵) ∈ ℝ) | |
| 20 | 12, 19 | sylan 580 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (-𝐴 mod 𝐵) ∈ ℝ) |
| 21 | 20 | recnd 11271 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (-𝐴 mod 𝐵) ∈ ℂ) |
| 22 | 18, 21 | subcld 11602 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (-𝐴 − (-𝐴 mod 𝐵)) ∈ ℂ) |
| 23 | 22, 7, 9 | divnegd 12038 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → -((-𝐴 − (-𝐴 mod 𝐵)) / 𝐵) = (-(-𝐴 − (-𝐴 mod 𝐵)) / 𝐵)) |
| 24 | 16, 23 | eqtrd 2769 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → -(⌊‘-(𝐴 / 𝐵)) = (-(-𝐴 − (-𝐴 mod 𝐵)) / 𝐵)) |
| 25 | 18, 21 | negsubdid 11617 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → -(-𝐴 − (-𝐴 mod 𝐵)) = (--𝐴 + (-𝐴 mod 𝐵))) |
| 26 | 4 | negnegd 11593 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → --𝐴 = 𝐴) |
| 27 | 26 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → --𝐴 = 𝐴) |
| 28 | 27 | oveq1d 7428 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (--𝐴 + (-𝐴 mod 𝐵)) = (𝐴 + (-𝐴 mod 𝐵))) |
| 29 | negmod 13939 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (-𝐴 mod 𝐵) = ((𝐵 − 𝐴) mod 𝐵)) | |
| 30 | 29 | oveq2d 7429 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 + (-𝐴 mod 𝐵)) = (𝐴 + ((𝐵 − 𝐴) mod 𝐵))) |
| 31 | 25, 28, 30 | 3eqtrd 2773 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → -(-𝐴 − (-𝐴 mod 𝐵)) = (𝐴 + ((𝐵 − 𝐴) mod 𝐵))) |
| 32 | 31 | oveq1d 7428 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (-(-𝐴 − (-𝐴 mod 𝐵)) / 𝐵) = ((𝐴 + ((𝐵 − 𝐴) mod 𝐵)) / 𝐵)) |
| 33 | 3, 24, 32 | 3eqtrd 2773 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌈‘(𝐴 / 𝐵)) = ((𝐴 + ((𝐵 − 𝐴) mod 𝐵)) / 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ‘cfv 6541 (class class class)co 7413 ℂcc 11135 ℝcr 11136 0cc0 11137 + caddc 11140 − cmin 11474 -cneg 11475 / cdiv 11902 ℝ+crp 13016 ⌊cfl 13812 ⌈cceil 13813 mod cmo 13891 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-sup 9464 df-inf 9465 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-n0 12510 df-z 12597 df-uz 12861 df-rp 13017 df-fl 13814 df-ceil 13815 df-mod 13892 |
| This theorem is referenced by: ceil5half3 47315 |
| Copyright terms: Public domain | W3C validator |