Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > plyrecj | Structured version Visualization version GIF version |
Description: A polynomial with real coefficients distributes under conjugation. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
plyrecj | ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝐹‘𝐴)) = (𝐹‘(∗‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzfid 13621 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (0...(deg‘𝐹)) ∈ Fin) | |
2 | 0re 10908 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
3 | eqid 2738 | . . . . . . . . . 10 ⊢ (coeff‘𝐹) = (coeff‘𝐹) | |
4 | 3 | coef2 25297 | . . . . . . . . 9 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 0 ∈ ℝ) → (coeff‘𝐹):ℕ0⟶ℝ) |
5 | 2, 4 | mpan2 687 | . . . . . . . 8 ⊢ (𝐹 ∈ (Poly‘ℝ) → (coeff‘𝐹):ℕ0⟶ℝ) |
6 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (coeff‘𝐹):ℕ0⟶ℝ) |
7 | elfznn0 13278 | . . . . . . 7 ⊢ (𝑥 ∈ (0...(deg‘𝐹)) → 𝑥 ∈ ℕ0) | |
8 | ffvelrn 6941 | . . . . . . 7 ⊢ (((coeff‘𝐹):ℕ0⟶ℝ ∧ 𝑥 ∈ ℕ0) → ((coeff‘𝐹)‘𝑥) ∈ ℝ) | |
9 | 6, 7, 8 | syl2an 595 | . . . . . 6 ⊢ (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → ((coeff‘𝐹)‘𝑥) ∈ ℝ) |
10 | 9 | recnd 10934 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → ((coeff‘𝐹)‘𝑥) ∈ ℂ) |
11 | simpr 484 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ℂ) | |
12 | expcl 13728 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ0) → (𝐴↑𝑥) ∈ ℂ) | |
13 | 11, 7, 12 | syl2an 595 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → (𝐴↑𝑥) ∈ ℂ) |
14 | 10, 13 | mulcld 10926 | . . . 4 ⊢ (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → (((coeff‘𝐹)‘𝑥) · (𝐴↑𝑥)) ∈ ℂ) |
15 | 1, 14 | fsumcj 15450 | . . 3 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · (𝐴↑𝑥))) = Σ𝑥 ∈ (0...(deg‘𝐹))(∗‘(((coeff‘𝐹)‘𝑥) · (𝐴↑𝑥)))) |
16 | 10, 13 | cjmuld 14860 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → (∗‘(((coeff‘𝐹)‘𝑥) · (𝐴↑𝑥))) = ((∗‘((coeff‘𝐹)‘𝑥)) · (∗‘(𝐴↑𝑥)))) |
17 | 9 | cjred 14865 | . . . . . 6 ⊢ (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → (∗‘((coeff‘𝐹)‘𝑥)) = ((coeff‘𝐹)‘𝑥)) |
18 | cjexp 14789 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ0) → (∗‘(𝐴↑𝑥)) = ((∗‘𝐴)↑𝑥)) | |
19 | 11, 7, 18 | syl2an 595 | . . . . . 6 ⊢ (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → (∗‘(𝐴↑𝑥)) = ((∗‘𝐴)↑𝑥)) |
20 | 17, 19 | oveq12d 7273 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → ((∗‘((coeff‘𝐹)‘𝑥)) · (∗‘(𝐴↑𝑥))) = (((coeff‘𝐹)‘𝑥) · ((∗‘𝐴)↑𝑥))) |
21 | 16, 20 | eqtrd 2778 | . . . 4 ⊢ (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → (∗‘(((coeff‘𝐹)‘𝑥) · (𝐴↑𝑥))) = (((coeff‘𝐹)‘𝑥) · ((∗‘𝐴)↑𝑥))) |
22 | 21 | sumeq2dv 15343 | . . 3 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → Σ𝑥 ∈ (0...(deg‘𝐹))(∗‘(((coeff‘𝐹)‘𝑥) · (𝐴↑𝑥))) = Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · ((∗‘𝐴)↑𝑥))) |
23 | 15, 22 | eqtrd 2778 | . 2 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · (𝐴↑𝑥))) = Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · ((∗‘𝐴)↑𝑥))) |
24 | eqid 2738 | . . . 4 ⊢ (deg‘𝐹) = (deg‘𝐹) | |
25 | 3, 24 | coeid2 25305 | . . 3 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (𝐹‘𝐴) = Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · (𝐴↑𝑥))) |
26 | 25 | fveq2d 6760 | . 2 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝐹‘𝐴)) = (∗‘Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · (𝐴↑𝑥)))) |
27 | cjcl 14744 | . . 3 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | |
28 | 3, 24 | coeid2 25305 | . . 3 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ (∗‘𝐴) ∈ ℂ) → (𝐹‘(∗‘𝐴)) = Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · ((∗‘𝐴)↑𝑥))) |
29 | 27, 28 | sylan2 592 | . 2 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (𝐹‘(∗‘𝐴)) = Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · ((∗‘𝐴)↑𝑥))) |
30 | 23, 26, 29 | 3eqtr4d 2788 | 1 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝐹‘𝐴)) = (𝐹‘(∗‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 0cc0 10802 · cmul 10807 ℕ0cn0 12163 ...cfz 13168 ↑cexp 13710 ∗ccj 14735 Σcsu 15325 Polycply 25250 coeffccoe 25252 degcdgr 25253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-rlim 15126 df-sum 15326 df-0p 24739 df-ply 25254 df-coe 25256 df-dgr 25257 |
This theorem is referenced by: plyreres 25348 aacjcl 25392 |
Copyright terms: Public domain | W3C validator |