MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyrecj Structured version   Visualization version   GIF version

Theorem plyrecj 25173
Description: A polynomial with real coefficients distributes under conjugation. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
plyrecj ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝐹𝐴)) = (𝐹‘(∗‘𝐴)))

Proof of Theorem plyrecj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fzfid 13546 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (0...(deg‘𝐹)) ∈ Fin)
2 0re 10835 . . . . . . . . 9 0 ∈ ℝ
3 eqid 2737 . . . . . . . . . 10 (coeff‘𝐹) = (coeff‘𝐹)
43coef2 25125 . . . . . . . . 9 ((𝐹 ∈ (Poly‘ℝ) ∧ 0 ∈ ℝ) → (coeff‘𝐹):ℕ0⟶ℝ)
52, 4mpan2 691 . . . . . . . 8 (𝐹 ∈ (Poly‘ℝ) → (coeff‘𝐹):ℕ0⟶ℝ)
65adantr 484 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (coeff‘𝐹):ℕ0⟶ℝ)
7 elfznn0 13205 . . . . . . 7 (𝑥 ∈ (0...(deg‘𝐹)) → 𝑥 ∈ ℕ0)
8 ffvelrn 6902 . . . . . . 7 (((coeff‘𝐹):ℕ0⟶ℝ ∧ 𝑥 ∈ ℕ0) → ((coeff‘𝐹)‘𝑥) ∈ ℝ)
96, 7, 8syl2an 599 . . . . . 6 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → ((coeff‘𝐹)‘𝑥) ∈ ℝ)
109recnd 10861 . . . . 5 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → ((coeff‘𝐹)‘𝑥) ∈ ℂ)
11 simpr 488 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ℂ)
12 expcl 13653 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ0) → (𝐴𝑥) ∈ ℂ)
1311, 7, 12syl2an 599 . . . . 5 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → (𝐴𝑥) ∈ ℂ)
1410, 13mulcld 10853 . . . 4 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → (((coeff‘𝐹)‘𝑥) · (𝐴𝑥)) ∈ ℂ)
151, 14fsumcj 15374 . . 3 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · (𝐴𝑥))) = Σ𝑥 ∈ (0...(deg‘𝐹))(∗‘(((coeff‘𝐹)‘𝑥) · (𝐴𝑥))))
1610, 13cjmuld 14784 . . . . 5 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → (∗‘(((coeff‘𝐹)‘𝑥) · (𝐴𝑥))) = ((∗‘((coeff‘𝐹)‘𝑥)) · (∗‘(𝐴𝑥))))
179cjred 14789 . . . . . 6 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → (∗‘((coeff‘𝐹)‘𝑥)) = ((coeff‘𝐹)‘𝑥))
18 cjexp 14713 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ0) → (∗‘(𝐴𝑥)) = ((∗‘𝐴)↑𝑥))
1911, 7, 18syl2an 599 . . . . . 6 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → (∗‘(𝐴𝑥)) = ((∗‘𝐴)↑𝑥))
2017, 19oveq12d 7231 . . . . 5 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → ((∗‘((coeff‘𝐹)‘𝑥)) · (∗‘(𝐴𝑥))) = (((coeff‘𝐹)‘𝑥) · ((∗‘𝐴)↑𝑥)))
2116, 20eqtrd 2777 . . . 4 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → (∗‘(((coeff‘𝐹)‘𝑥) · (𝐴𝑥))) = (((coeff‘𝐹)‘𝑥) · ((∗‘𝐴)↑𝑥)))
2221sumeq2dv 15267 . . 3 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → Σ𝑥 ∈ (0...(deg‘𝐹))(∗‘(((coeff‘𝐹)‘𝑥) · (𝐴𝑥))) = Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · ((∗‘𝐴)↑𝑥)))
2315, 22eqtrd 2777 . 2 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · (𝐴𝑥))) = Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · ((∗‘𝐴)↑𝑥)))
24 eqid 2737 . . . 4 (deg‘𝐹) = (deg‘𝐹)
253, 24coeid2 25133 . . 3 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (𝐹𝐴) = Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · (𝐴𝑥)))
2625fveq2d 6721 . 2 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝐹𝐴)) = (∗‘Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · (𝐴𝑥))))
27 cjcl 14668 . . 3 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
283, 24coeid2 25133 . . 3 ((𝐹 ∈ (Poly‘ℝ) ∧ (∗‘𝐴) ∈ ℂ) → (𝐹‘(∗‘𝐴)) = Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · ((∗‘𝐴)↑𝑥)))
2927, 28sylan2 596 . 2 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (𝐹‘(∗‘𝐴)) = Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · ((∗‘𝐴)↑𝑥)))
3023, 26, 293eqtr4d 2787 1 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝐹𝐴)) = (𝐹‘(∗‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wf 6376  cfv 6380  (class class class)co 7213  cc 10727  cr 10728  0cc0 10729   · cmul 10734  0cn0 12090  ...cfz 13095  cexp 13635  ccj 14659  Σcsu 15249  Polycply 25078  coeffccoe 25080  degcdgr 25081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-fz 13096  df-fzo 13239  df-fl 13367  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-rlim 15050  df-sum 15250  df-0p 24567  df-ply 25082  df-coe 25084  df-dgr 25085
This theorem is referenced by:  plyreres  25176  aacjcl  25220
  Copyright terms: Public domain W3C validator