MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyrecj Structured version   Visualization version   GIF version

Theorem plyrecj 26244
Description: A polynomial with real coefficients distributes under conjugation. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
plyrecj ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝐹𝐴)) = (𝐹‘(∗‘𝐴)))

Proof of Theorem plyrecj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fzfid 13996 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (0...(deg‘𝐹)) ∈ Fin)
2 0re 11242 . . . . . . . . 9 0 ∈ ℝ
3 eqid 2736 . . . . . . . . . 10 (coeff‘𝐹) = (coeff‘𝐹)
43coef2 26193 . . . . . . . . 9 ((𝐹 ∈ (Poly‘ℝ) ∧ 0 ∈ ℝ) → (coeff‘𝐹):ℕ0⟶ℝ)
52, 4mpan2 691 . . . . . . . 8 (𝐹 ∈ (Poly‘ℝ) → (coeff‘𝐹):ℕ0⟶ℝ)
65adantr 480 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (coeff‘𝐹):ℕ0⟶ℝ)
7 elfznn0 13642 . . . . . . 7 (𝑥 ∈ (0...(deg‘𝐹)) → 𝑥 ∈ ℕ0)
8 ffvelcdm 7076 . . . . . . 7 (((coeff‘𝐹):ℕ0⟶ℝ ∧ 𝑥 ∈ ℕ0) → ((coeff‘𝐹)‘𝑥) ∈ ℝ)
96, 7, 8syl2an 596 . . . . . 6 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → ((coeff‘𝐹)‘𝑥) ∈ ℝ)
109recnd 11268 . . . . 5 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → ((coeff‘𝐹)‘𝑥) ∈ ℂ)
11 simpr 484 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ℂ)
12 expcl 14102 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ0) → (𝐴𝑥) ∈ ℂ)
1311, 7, 12syl2an 596 . . . . 5 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → (𝐴𝑥) ∈ ℂ)
1410, 13mulcld 11260 . . . 4 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → (((coeff‘𝐹)‘𝑥) · (𝐴𝑥)) ∈ ℂ)
151, 14fsumcj 15831 . . 3 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · (𝐴𝑥))) = Σ𝑥 ∈ (0...(deg‘𝐹))(∗‘(((coeff‘𝐹)‘𝑥) · (𝐴𝑥))))
1610, 13cjmuld 15245 . . . . 5 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → (∗‘(((coeff‘𝐹)‘𝑥) · (𝐴𝑥))) = ((∗‘((coeff‘𝐹)‘𝑥)) · (∗‘(𝐴𝑥))))
179cjred 15250 . . . . . 6 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → (∗‘((coeff‘𝐹)‘𝑥)) = ((coeff‘𝐹)‘𝑥))
18 cjexp 15174 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ0) → (∗‘(𝐴𝑥)) = ((∗‘𝐴)↑𝑥))
1911, 7, 18syl2an 596 . . . . . 6 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → (∗‘(𝐴𝑥)) = ((∗‘𝐴)↑𝑥))
2017, 19oveq12d 7428 . . . . 5 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → ((∗‘((coeff‘𝐹)‘𝑥)) · (∗‘(𝐴𝑥))) = (((coeff‘𝐹)‘𝑥) · ((∗‘𝐴)↑𝑥)))
2116, 20eqtrd 2771 . . . 4 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → (∗‘(((coeff‘𝐹)‘𝑥) · (𝐴𝑥))) = (((coeff‘𝐹)‘𝑥) · ((∗‘𝐴)↑𝑥)))
2221sumeq2dv 15723 . . 3 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → Σ𝑥 ∈ (0...(deg‘𝐹))(∗‘(((coeff‘𝐹)‘𝑥) · (𝐴𝑥))) = Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · ((∗‘𝐴)↑𝑥)))
2315, 22eqtrd 2771 . 2 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · (𝐴𝑥))) = Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · ((∗‘𝐴)↑𝑥)))
24 eqid 2736 . . . 4 (deg‘𝐹) = (deg‘𝐹)
253, 24coeid2 26201 . . 3 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (𝐹𝐴) = Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · (𝐴𝑥)))
2625fveq2d 6885 . 2 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝐹𝐴)) = (∗‘Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · (𝐴𝑥))))
27 cjcl 15129 . . 3 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
283, 24coeid2 26201 . . 3 ((𝐹 ∈ (Poly‘ℝ) ∧ (∗‘𝐴) ∈ ℂ) → (𝐹‘(∗‘𝐴)) = Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · ((∗‘𝐴)↑𝑥)))
2927, 28sylan2 593 . 2 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (𝐹‘(∗‘𝐴)) = Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · ((∗‘𝐴)↑𝑥)))
3023, 26, 293eqtr4d 2781 1 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝐹𝐴)) = (𝐹‘(∗‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wf 6532  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134   · cmul 11139  0cn0 12506  ...cfz 13529  cexp 14084  ccj 15120  Σcsu 15707  Polycply 26146  coeffccoe 26148  degcdgr 26149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-rlim 15510  df-sum 15708  df-0p 25628  df-ply 26150  df-coe 26152  df-dgr 26153
This theorem is referenced by:  plyreres  26247  aacjcl  26292
  Copyright terms: Public domain W3C validator