| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > climaddf | Structured version Visualization version GIF version | ||
| Description: A version of climadd 15598 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| climaddf.1 | ⊢ Ⅎ𝑘𝜑 |
| climaddf.2 | ⊢ Ⅎ𝑘𝐹 |
| climaddf.3 | ⊢ Ⅎ𝑘𝐺 |
| climaddf.4 | ⊢ Ⅎ𝑘𝐻 |
| climaddf.5 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climaddf.6 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climaddf.7 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
| climaddf.8 | ⊢ (𝜑 → 𝐻 ∈ 𝑋) |
| climaddf.9 | ⊢ (𝜑 → 𝐺 ⇝ 𝐵) |
| climaddf.10 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| climaddf.11 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) |
| climaddf.12 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) |
| Ref | Expression |
|---|---|
| climaddf | ⊢ (𝜑 → 𝐻 ⇝ (𝐴 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climaddf.5 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | climaddf.6 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | climaddf.7 | . 2 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
| 4 | climaddf.8 | . 2 ⊢ (𝜑 → 𝐻 ∈ 𝑋) | |
| 5 | climaddf.9 | . 2 ⊢ (𝜑 → 𝐺 ⇝ 𝐵) | |
| 6 | climaddf.1 | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
| 7 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
| 8 | 6, 7 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
| 9 | climaddf.2 | . . . . . 6 ⊢ Ⅎ𝑘𝐹 | |
| 10 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑘𝑗 | |
| 11 | 9, 10 | nffv 6868 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
| 12 | 11 | nfel1 2908 | . . . 4 ⊢ Ⅎ𝑘(𝐹‘𝑗) ∈ ℂ |
| 13 | 8, 12 | nfim 1896 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℂ) |
| 14 | eleq1w 2811 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
| 15 | 14 | anbi2d 630 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
| 16 | fveq2 6858 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
| 17 | 16 | eleq1d 2813 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑗) ∈ ℂ)) |
| 18 | 15, 17 | imbi12d 344 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℂ))) |
| 19 | climaddf.10 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
| 20 | 13, 18, 19 | chvarfv 2241 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℂ) |
| 21 | climaddf.3 | . . . . . 6 ⊢ Ⅎ𝑘𝐺 | |
| 22 | 21, 10 | nffv 6868 | . . . . 5 ⊢ Ⅎ𝑘(𝐺‘𝑗) |
| 23 | 22 | nfel1 2908 | . . . 4 ⊢ Ⅎ𝑘(𝐺‘𝑗) ∈ ℂ |
| 24 | 8, 23 | nfim 1896 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ∈ ℂ) |
| 25 | fveq2 6858 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐺‘𝑘) = (𝐺‘𝑗)) | |
| 26 | 25 | eleq1d 2813 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐺‘𝑘) ∈ ℂ ↔ (𝐺‘𝑗) ∈ ℂ)) |
| 27 | 15, 26 | imbi12d 344 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ∈ ℂ))) |
| 28 | climaddf.11 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) | |
| 29 | 24, 27, 28 | chvarfv 2241 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ∈ ℂ) |
| 30 | climaddf.4 | . . . . . 6 ⊢ Ⅎ𝑘𝐻 | |
| 31 | 30, 10 | nffv 6868 | . . . . 5 ⊢ Ⅎ𝑘(𝐻‘𝑗) |
| 32 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑘 + | |
| 33 | 11, 32, 22 | nfov 7417 | . . . . 5 ⊢ Ⅎ𝑘((𝐹‘𝑗) + (𝐺‘𝑗)) |
| 34 | 31, 33 | nfeq 2905 | . . . 4 ⊢ Ⅎ𝑘(𝐻‘𝑗) = ((𝐹‘𝑗) + (𝐺‘𝑗)) |
| 35 | 8, 34 | nfim 1896 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = ((𝐹‘𝑗) + (𝐺‘𝑗))) |
| 36 | fveq2 6858 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐻‘𝑘) = (𝐻‘𝑗)) | |
| 37 | 16, 25 | oveq12d 7405 | . . . . 5 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) + (𝐺‘𝑘)) = ((𝐹‘𝑗) + (𝐺‘𝑗))) |
| 38 | 36, 37 | eqeq12d 2745 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘)) ↔ (𝐻‘𝑗) = ((𝐹‘𝑗) + (𝐺‘𝑗)))) |
| 39 | 15, 38 | imbi12d 344 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = ((𝐹‘𝑗) + (𝐺‘𝑗))))) |
| 40 | climaddf.12 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) | |
| 41 | 35, 39, 40 | chvarfv 2241 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = ((𝐹‘𝑗) + (𝐺‘𝑗))) |
| 42 | 1, 2, 3, 4, 5, 20, 29, 41 | climadd 15598 | 1 ⊢ (𝜑 → 𝐻 ⇝ (𝐴 + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 + caddc 11071 ℤcz 12529 ℤ≥cuz 12793 ⇝ cli 15450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 |
| This theorem is referenced by: fourierdlem112 46216 |
| Copyright terms: Public domain | W3C validator |