Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climaddf Structured version   Visualization version   GIF version

Theorem climaddf 45536
Description: A version of climadd 15678 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
climaddf.1 𝑘𝜑
climaddf.2 𝑘𝐹
climaddf.3 𝑘𝐺
climaddf.4 𝑘𝐻
climaddf.5 𝑍 = (ℤ𝑀)
climaddf.6 (𝜑𝑀 ∈ ℤ)
climaddf.7 (𝜑𝐹𝐴)
climaddf.8 (𝜑𝐻𝑋)
climaddf.9 (𝜑𝐺𝐵)
climaddf.10 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climaddf.11 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
climaddf.12 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
Assertion
Ref Expression
climaddf (𝜑𝐻 ⇝ (𝐴 + 𝐵))
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝐻(𝑘)   𝑀(𝑘)   𝑋(𝑘)

Proof of Theorem climaddf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climaddf.5 . 2 𝑍 = (ℤ𝑀)
2 climaddf.6 . 2 (𝜑𝑀 ∈ ℤ)
3 climaddf.7 . 2 (𝜑𝐹𝐴)
4 climaddf.8 . 2 (𝜑𝐻𝑋)
5 climaddf.9 . 2 (𝜑𝐺𝐵)
6 climaddf.1 . . . . 5 𝑘𝜑
7 nfv 1913 . . . . 5 𝑘 𝑗𝑍
86, 7nfan 1898 . . . 4 𝑘(𝜑𝑗𝑍)
9 climaddf.2 . . . . . 6 𝑘𝐹
10 nfcv 2908 . . . . . 6 𝑘𝑗
119, 10nffv 6930 . . . . 5 𝑘(𝐹𝑗)
1211nfel1 2925 . . . 4 𝑘(𝐹𝑗) ∈ ℂ
138, 12nfim 1895 . . 3 𝑘((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℂ)
14 eleq1w 2827 . . . . 5 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
1514anbi2d 629 . . . 4 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
16 fveq2 6920 . . . . 5 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1716eleq1d 2829 . . . 4 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑗) ∈ ℂ))
1815, 17imbi12d 344 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ) ↔ ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℂ)))
19 climaddf.10 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2013, 18, 19chvarfv 2241 . 2 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℂ)
21 climaddf.3 . . . . . 6 𝑘𝐺
2221, 10nffv 6930 . . . . 5 𝑘(𝐺𝑗)
2322nfel1 2925 . . . 4 𝑘(𝐺𝑗) ∈ ℂ
248, 23nfim 1895 . . 3 𝑘((𝜑𝑗𝑍) → (𝐺𝑗) ∈ ℂ)
25 fveq2 6920 . . . . 5 (𝑘 = 𝑗 → (𝐺𝑘) = (𝐺𝑗))
2625eleq1d 2829 . . . 4 (𝑘 = 𝑗 → ((𝐺𝑘) ∈ ℂ ↔ (𝐺𝑗) ∈ ℂ))
2715, 26imbi12d 344 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ) ↔ ((𝜑𝑗𝑍) → (𝐺𝑗) ∈ ℂ)))
28 climaddf.11 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
2924, 27, 28chvarfv 2241 . 2 ((𝜑𝑗𝑍) → (𝐺𝑗) ∈ ℂ)
30 climaddf.4 . . . . . 6 𝑘𝐻
3130, 10nffv 6930 . . . . 5 𝑘(𝐻𝑗)
32 nfcv 2908 . . . . . 6 𝑘 +
3311, 32, 22nfov 7478 . . . . 5 𝑘((𝐹𝑗) + (𝐺𝑗))
3431, 33nfeq 2922 . . . 4 𝑘(𝐻𝑗) = ((𝐹𝑗) + (𝐺𝑗))
358, 34nfim 1895 . . 3 𝑘((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝐹𝑗) + (𝐺𝑗)))
36 fveq2 6920 . . . . 5 (𝑘 = 𝑗 → (𝐻𝑘) = (𝐻𝑗))
3716, 25oveq12d 7466 . . . . 5 (𝑘 = 𝑗 → ((𝐹𝑘) + (𝐺𝑘)) = ((𝐹𝑗) + (𝐺𝑗)))
3836, 37eqeq12d 2756 . . . 4 (𝑘 = 𝑗 → ((𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)) ↔ (𝐻𝑗) = ((𝐹𝑗) + (𝐺𝑗))))
3915, 38imbi12d 344 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘))) ↔ ((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝐹𝑗) + (𝐺𝑗)))))
40 climaddf.12 . . 3 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
4135, 39, 40chvarfv 2241 . 2 ((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝐹𝑗) + (𝐺𝑗)))
421, 2, 3, 4, 5, 20, 29, 41climadd 15678 1 (𝜑𝐻 ⇝ (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wnf 1781  wcel 2108  wnfc 2893   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182   + caddc 11187  cz 12639  cuz 12903  cli 15530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534
This theorem is referenced by:  fourierdlem112  46139
  Copyright terms: Public domain W3C validator