| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > climaddf | Structured version Visualization version GIF version | ||
| Description: A version of climadd 15543 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| climaddf.1 | ⊢ Ⅎ𝑘𝜑 |
| climaddf.2 | ⊢ Ⅎ𝑘𝐹 |
| climaddf.3 | ⊢ Ⅎ𝑘𝐺 |
| climaddf.4 | ⊢ Ⅎ𝑘𝐻 |
| climaddf.5 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climaddf.6 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climaddf.7 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
| climaddf.8 | ⊢ (𝜑 → 𝐻 ∈ 𝑋) |
| climaddf.9 | ⊢ (𝜑 → 𝐺 ⇝ 𝐵) |
| climaddf.10 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| climaddf.11 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) |
| climaddf.12 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) |
| Ref | Expression |
|---|---|
| climaddf | ⊢ (𝜑 → 𝐻 ⇝ (𝐴 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climaddf.5 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | climaddf.6 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | climaddf.7 | . 2 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
| 4 | climaddf.8 | . 2 ⊢ (𝜑 → 𝐻 ∈ 𝑋) | |
| 5 | climaddf.9 | . 2 ⊢ (𝜑 → 𝐺 ⇝ 𝐵) | |
| 6 | climaddf.1 | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
| 7 | nfv 1915 | . . . . 5 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
| 8 | 6, 7 | nfan 1900 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
| 9 | climaddf.2 | . . . . . 6 ⊢ Ⅎ𝑘𝐹 | |
| 10 | nfcv 2895 | . . . . . 6 ⊢ Ⅎ𝑘𝑗 | |
| 11 | 9, 10 | nffv 6840 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
| 12 | 11 | nfel1 2912 | . . . 4 ⊢ Ⅎ𝑘(𝐹‘𝑗) ∈ ℂ |
| 13 | 8, 12 | nfim 1897 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℂ) |
| 14 | eleq1w 2816 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
| 15 | 14 | anbi2d 630 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
| 16 | fveq2 6830 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
| 17 | 16 | eleq1d 2818 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑗) ∈ ℂ)) |
| 18 | 15, 17 | imbi12d 344 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℂ))) |
| 19 | climaddf.10 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
| 20 | 13, 18, 19 | chvarfv 2245 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℂ) |
| 21 | climaddf.3 | . . . . . 6 ⊢ Ⅎ𝑘𝐺 | |
| 22 | 21, 10 | nffv 6840 | . . . . 5 ⊢ Ⅎ𝑘(𝐺‘𝑗) |
| 23 | 22 | nfel1 2912 | . . . 4 ⊢ Ⅎ𝑘(𝐺‘𝑗) ∈ ℂ |
| 24 | 8, 23 | nfim 1897 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ∈ ℂ) |
| 25 | fveq2 6830 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐺‘𝑘) = (𝐺‘𝑗)) | |
| 26 | 25 | eleq1d 2818 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐺‘𝑘) ∈ ℂ ↔ (𝐺‘𝑗) ∈ ℂ)) |
| 27 | 15, 26 | imbi12d 344 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ∈ ℂ))) |
| 28 | climaddf.11 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) | |
| 29 | 24, 27, 28 | chvarfv 2245 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ∈ ℂ) |
| 30 | climaddf.4 | . . . . . 6 ⊢ Ⅎ𝑘𝐻 | |
| 31 | 30, 10 | nffv 6840 | . . . . 5 ⊢ Ⅎ𝑘(𝐻‘𝑗) |
| 32 | nfcv 2895 | . . . . . 6 ⊢ Ⅎ𝑘 + | |
| 33 | 11, 32, 22 | nfov 7384 | . . . . 5 ⊢ Ⅎ𝑘((𝐹‘𝑗) + (𝐺‘𝑗)) |
| 34 | 31, 33 | nfeq 2909 | . . . 4 ⊢ Ⅎ𝑘(𝐻‘𝑗) = ((𝐹‘𝑗) + (𝐺‘𝑗)) |
| 35 | 8, 34 | nfim 1897 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = ((𝐹‘𝑗) + (𝐺‘𝑗))) |
| 36 | fveq2 6830 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐻‘𝑘) = (𝐻‘𝑗)) | |
| 37 | 16, 25 | oveq12d 7372 | . . . . 5 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) + (𝐺‘𝑘)) = ((𝐹‘𝑗) + (𝐺‘𝑗))) |
| 38 | 36, 37 | eqeq12d 2749 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘)) ↔ (𝐻‘𝑗) = ((𝐹‘𝑗) + (𝐺‘𝑗)))) |
| 39 | 15, 38 | imbi12d 344 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = ((𝐹‘𝑗) + (𝐺‘𝑗))))) |
| 40 | climaddf.12 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) | |
| 41 | 35, 39, 40 | chvarfv 2245 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = ((𝐹‘𝑗) + (𝐺‘𝑗))) |
| 42 | 1, 2, 3, 4, 5, 20, 29, 41 | climadd 15543 | 1 ⊢ (𝜑 → 𝐻 ⇝ (𝐴 + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2113 Ⅎwnfc 2880 class class class wbr 5095 ‘cfv 6488 (class class class)co 7354 ℂcc 11013 + caddc 11018 ℤcz 12477 ℤ≥cuz 12740 ⇝ cli 15395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-sup 9335 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-n0 12391 df-z 12478 df-uz 12741 df-rp 12895 df-seq 13913 df-exp 13973 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-clim 15399 |
| This theorem is referenced by: fourierdlem112 46343 |
| Copyright terms: Public domain | W3C validator |