![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climaddf | Structured version Visualization version GIF version |
Description: A version of climadd 15575 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
climaddf.1 | ⊢ Ⅎ𝑘𝜑 |
climaddf.2 | ⊢ Ⅎ𝑘𝐹 |
climaddf.3 | ⊢ Ⅎ𝑘𝐺 |
climaddf.4 | ⊢ Ⅎ𝑘𝐻 |
climaddf.5 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climaddf.6 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climaddf.7 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climaddf.8 | ⊢ (𝜑 → 𝐻 ∈ 𝑋) |
climaddf.9 | ⊢ (𝜑 → 𝐺 ⇝ 𝐵) |
climaddf.10 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
climaddf.11 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) |
climaddf.12 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) |
Ref | Expression |
---|---|
climaddf | ⊢ (𝜑 → 𝐻 ⇝ (𝐴 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climaddf.5 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climaddf.6 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climaddf.7 | . 2 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
4 | climaddf.8 | . 2 ⊢ (𝜑 → 𝐻 ∈ 𝑋) | |
5 | climaddf.9 | . 2 ⊢ (𝜑 → 𝐺 ⇝ 𝐵) | |
6 | climaddf.1 | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
7 | nfv 1917 | . . . . 5 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
8 | 6, 7 | nfan 1902 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
9 | climaddf.2 | . . . . . 6 ⊢ Ⅎ𝑘𝐹 | |
10 | nfcv 2903 | . . . . . 6 ⊢ Ⅎ𝑘𝑗 | |
11 | 9, 10 | nffv 6901 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
12 | 11 | nfel1 2919 | . . . 4 ⊢ Ⅎ𝑘(𝐹‘𝑗) ∈ ℂ |
13 | 8, 12 | nfim 1899 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℂ) |
14 | eleq1w 2816 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
15 | 14 | anbi2d 629 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
16 | fveq2 6891 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
17 | 16 | eleq1d 2818 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑗) ∈ ℂ)) |
18 | 15, 17 | imbi12d 344 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℂ))) |
19 | climaddf.10 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
20 | 13, 18, 19 | chvarfv 2233 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℂ) |
21 | climaddf.3 | . . . . . 6 ⊢ Ⅎ𝑘𝐺 | |
22 | 21, 10 | nffv 6901 | . . . . 5 ⊢ Ⅎ𝑘(𝐺‘𝑗) |
23 | 22 | nfel1 2919 | . . . 4 ⊢ Ⅎ𝑘(𝐺‘𝑗) ∈ ℂ |
24 | 8, 23 | nfim 1899 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ∈ ℂ) |
25 | fveq2 6891 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐺‘𝑘) = (𝐺‘𝑗)) | |
26 | 25 | eleq1d 2818 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐺‘𝑘) ∈ ℂ ↔ (𝐺‘𝑗) ∈ ℂ)) |
27 | 15, 26 | imbi12d 344 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ∈ ℂ))) |
28 | climaddf.11 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) | |
29 | 24, 27, 28 | chvarfv 2233 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ∈ ℂ) |
30 | climaddf.4 | . . . . . 6 ⊢ Ⅎ𝑘𝐻 | |
31 | 30, 10 | nffv 6901 | . . . . 5 ⊢ Ⅎ𝑘(𝐻‘𝑗) |
32 | nfcv 2903 | . . . . . 6 ⊢ Ⅎ𝑘 + | |
33 | 11, 32, 22 | nfov 7438 | . . . . 5 ⊢ Ⅎ𝑘((𝐹‘𝑗) + (𝐺‘𝑗)) |
34 | 31, 33 | nfeq 2916 | . . . 4 ⊢ Ⅎ𝑘(𝐻‘𝑗) = ((𝐹‘𝑗) + (𝐺‘𝑗)) |
35 | 8, 34 | nfim 1899 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = ((𝐹‘𝑗) + (𝐺‘𝑗))) |
36 | fveq2 6891 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐻‘𝑘) = (𝐻‘𝑗)) | |
37 | 16, 25 | oveq12d 7426 | . . . . 5 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) + (𝐺‘𝑘)) = ((𝐹‘𝑗) + (𝐺‘𝑗))) |
38 | 36, 37 | eqeq12d 2748 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘)) ↔ (𝐻‘𝑗) = ((𝐹‘𝑗) + (𝐺‘𝑗)))) |
39 | 15, 38 | imbi12d 344 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = ((𝐹‘𝑗) + (𝐺‘𝑗))))) |
40 | climaddf.12 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) | |
41 | 35, 39, 40 | chvarfv 2233 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = ((𝐹‘𝑗) + (𝐺‘𝑗))) |
42 | 1, 2, 3, 4, 5, 20, 29, 41 | climadd 15575 | 1 ⊢ (𝜑 → 𝐻 ⇝ (𝐴 + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 Ⅎwnf 1785 ∈ wcel 2106 Ⅎwnfc 2883 class class class wbr 5148 ‘cfv 6543 (class class class)co 7408 ℂcc 11107 + caddc 11112 ℤcz 12557 ℤ≥cuz 12821 ⇝ cli 15427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-seq 13966 df-exp 14027 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-clim 15431 |
This theorem is referenced by: fourierdlem112 44924 |
Copyright terms: Public domain | W3C validator |