Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climaddf Structured version   Visualization version   GIF version

Theorem climaddf 43826
Description: A version of climadd 15511 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
climaddf.1 𝑘𝜑
climaddf.2 𝑘𝐹
climaddf.3 𝑘𝐺
climaddf.4 𝑘𝐻
climaddf.5 𝑍 = (ℤ𝑀)
climaddf.6 (𝜑𝑀 ∈ ℤ)
climaddf.7 (𝜑𝐹𝐴)
climaddf.8 (𝜑𝐻𝑋)
climaddf.9 (𝜑𝐺𝐵)
climaddf.10 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climaddf.11 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
climaddf.12 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
Assertion
Ref Expression
climaddf (𝜑𝐻 ⇝ (𝐴 + 𝐵))
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝐻(𝑘)   𝑀(𝑘)   𝑋(𝑘)

Proof of Theorem climaddf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climaddf.5 . 2 𝑍 = (ℤ𝑀)
2 climaddf.6 . 2 (𝜑𝑀 ∈ ℤ)
3 climaddf.7 . 2 (𝜑𝐹𝐴)
4 climaddf.8 . 2 (𝜑𝐻𝑋)
5 climaddf.9 . 2 (𝜑𝐺𝐵)
6 climaddf.1 . . . . 5 𝑘𝜑
7 nfv 1917 . . . . 5 𝑘 𝑗𝑍
86, 7nfan 1902 . . . 4 𝑘(𝜑𝑗𝑍)
9 climaddf.2 . . . . . 6 𝑘𝐹
10 nfcv 2906 . . . . . 6 𝑘𝑗
119, 10nffv 6850 . . . . 5 𝑘(𝐹𝑗)
1211nfel1 2922 . . . 4 𝑘(𝐹𝑗) ∈ ℂ
138, 12nfim 1899 . . 3 𝑘((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℂ)
14 eleq1w 2820 . . . . 5 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
1514anbi2d 629 . . . 4 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
16 fveq2 6840 . . . . 5 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1716eleq1d 2822 . . . 4 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑗) ∈ ℂ))
1815, 17imbi12d 344 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ) ↔ ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℂ)))
19 climaddf.10 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2013, 18, 19chvarfv 2233 . 2 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℂ)
21 climaddf.3 . . . . . 6 𝑘𝐺
2221, 10nffv 6850 . . . . 5 𝑘(𝐺𝑗)
2322nfel1 2922 . . . 4 𝑘(𝐺𝑗) ∈ ℂ
248, 23nfim 1899 . . 3 𝑘((𝜑𝑗𝑍) → (𝐺𝑗) ∈ ℂ)
25 fveq2 6840 . . . . 5 (𝑘 = 𝑗 → (𝐺𝑘) = (𝐺𝑗))
2625eleq1d 2822 . . . 4 (𝑘 = 𝑗 → ((𝐺𝑘) ∈ ℂ ↔ (𝐺𝑗) ∈ ℂ))
2715, 26imbi12d 344 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ) ↔ ((𝜑𝑗𝑍) → (𝐺𝑗) ∈ ℂ)))
28 climaddf.11 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
2924, 27, 28chvarfv 2233 . 2 ((𝜑𝑗𝑍) → (𝐺𝑗) ∈ ℂ)
30 climaddf.4 . . . . . 6 𝑘𝐻
3130, 10nffv 6850 . . . . 5 𝑘(𝐻𝑗)
32 nfcv 2906 . . . . . 6 𝑘 +
3311, 32, 22nfov 7384 . . . . 5 𝑘((𝐹𝑗) + (𝐺𝑗))
3431, 33nfeq 2919 . . . 4 𝑘(𝐻𝑗) = ((𝐹𝑗) + (𝐺𝑗))
358, 34nfim 1899 . . 3 𝑘((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝐹𝑗) + (𝐺𝑗)))
36 fveq2 6840 . . . . 5 (𝑘 = 𝑗 → (𝐻𝑘) = (𝐻𝑗))
3716, 25oveq12d 7372 . . . . 5 (𝑘 = 𝑗 → ((𝐹𝑘) + (𝐺𝑘)) = ((𝐹𝑗) + (𝐺𝑗)))
3836, 37eqeq12d 2752 . . . 4 (𝑘 = 𝑗 → ((𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)) ↔ (𝐻𝑗) = ((𝐹𝑗) + (𝐺𝑗))))
3915, 38imbi12d 344 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘))) ↔ ((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝐹𝑗) + (𝐺𝑗)))))
40 climaddf.12 . . 3 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
4135, 39, 40chvarfv 2233 . 2 ((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝐹𝑗) + (𝐺𝑗)))
421, 2, 3, 4, 5, 20, 29, 41climadd 15511 1 (𝜑𝐻 ⇝ (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wnf 1785  wcel 2106  wnfc 2886   class class class wbr 5104  cfv 6494  (class class class)co 7354  cc 11046   + caddc 11051  cz 12496  cuz 12760  cli 15363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7669  ax-cnex 11104  ax-resscn 11105  ax-1cn 11106  ax-icn 11107  ax-addcl 11108  ax-addrcl 11109  ax-mulcl 11110  ax-mulrcl 11111  ax-mulcom 11112  ax-addass 11113  ax-mulass 11114  ax-distr 11115  ax-i2m1 11116  ax-1ne0 11117  ax-1rid 11118  ax-rnegex 11119  ax-rrecex 11120  ax-cnre 11121  ax-pre-lttri 11122  ax-pre-lttrn 11123  ax-pre-ltadd 11124  ax-pre-mulgt0 11125  ax-pre-sup 11126
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5530  df-eprel 5536  df-po 5544  df-so 5545  df-fr 5587  df-we 5589  df-xp 5638  df-rel 5639  df-cnv 5640  df-co 5641  df-dm 5642  df-rn 5643  df-res 5644  df-ima 5645  df-pred 6252  df-ord 6319  df-on 6320  df-lim 6321  df-suc 6322  df-iota 6446  df-fun 6496  df-fn 6497  df-f 6498  df-f1 6499  df-fo 6500  df-f1o 6501  df-fv 6502  df-riota 7310  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7800  df-2nd 7919  df-frecs 8209  df-wrecs 8240  df-recs 8314  df-rdg 8353  df-er 8645  df-en 8881  df-dom 8882  df-sdom 8883  df-sup 9375  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11384  df-neg 11385  df-div 11810  df-nn 12151  df-2 12213  df-3 12214  df-n0 12411  df-z 12497  df-uz 12761  df-rp 12913  df-seq 13904  df-exp 13965  df-cj 14981  df-re 14982  df-im 14983  df-sqrt 15117  df-abs 15118  df-clim 15367
This theorem is referenced by:  fourierdlem112  44429
  Copyright terms: Public domain W3C validator