Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climaddf Structured version   Visualization version   GIF version

Theorem climaddf 45742
Description: A version of climadd 15543 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
climaddf.1 𝑘𝜑
climaddf.2 𝑘𝐹
climaddf.3 𝑘𝐺
climaddf.4 𝑘𝐻
climaddf.5 𝑍 = (ℤ𝑀)
climaddf.6 (𝜑𝑀 ∈ ℤ)
climaddf.7 (𝜑𝐹𝐴)
climaddf.8 (𝜑𝐻𝑋)
climaddf.9 (𝜑𝐺𝐵)
climaddf.10 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climaddf.11 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
climaddf.12 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
Assertion
Ref Expression
climaddf (𝜑𝐻 ⇝ (𝐴 + 𝐵))
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝐻(𝑘)   𝑀(𝑘)   𝑋(𝑘)

Proof of Theorem climaddf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climaddf.5 . 2 𝑍 = (ℤ𝑀)
2 climaddf.6 . 2 (𝜑𝑀 ∈ ℤ)
3 climaddf.7 . 2 (𝜑𝐹𝐴)
4 climaddf.8 . 2 (𝜑𝐻𝑋)
5 climaddf.9 . 2 (𝜑𝐺𝐵)
6 climaddf.1 . . . . 5 𝑘𝜑
7 nfv 1915 . . . . 5 𝑘 𝑗𝑍
86, 7nfan 1900 . . . 4 𝑘(𝜑𝑗𝑍)
9 climaddf.2 . . . . . 6 𝑘𝐹
10 nfcv 2895 . . . . . 6 𝑘𝑗
119, 10nffv 6840 . . . . 5 𝑘(𝐹𝑗)
1211nfel1 2912 . . . 4 𝑘(𝐹𝑗) ∈ ℂ
138, 12nfim 1897 . . 3 𝑘((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℂ)
14 eleq1w 2816 . . . . 5 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
1514anbi2d 630 . . . 4 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
16 fveq2 6830 . . . . 5 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1716eleq1d 2818 . . . 4 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑗) ∈ ℂ))
1815, 17imbi12d 344 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ) ↔ ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℂ)))
19 climaddf.10 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2013, 18, 19chvarfv 2245 . 2 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℂ)
21 climaddf.3 . . . . . 6 𝑘𝐺
2221, 10nffv 6840 . . . . 5 𝑘(𝐺𝑗)
2322nfel1 2912 . . . 4 𝑘(𝐺𝑗) ∈ ℂ
248, 23nfim 1897 . . 3 𝑘((𝜑𝑗𝑍) → (𝐺𝑗) ∈ ℂ)
25 fveq2 6830 . . . . 5 (𝑘 = 𝑗 → (𝐺𝑘) = (𝐺𝑗))
2625eleq1d 2818 . . . 4 (𝑘 = 𝑗 → ((𝐺𝑘) ∈ ℂ ↔ (𝐺𝑗) ∈ ℂ))
2715, 26imbi12d 344 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ) ↔ ((𝜑𝑗𝑍) → (𝐺𝑗) ∈ ℂ)))
28 climaddf.11 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
2924, 27, 28chvarfv 2245 . 2 ((𝜑𝑗𝑍) → (𝐺𝑗) ∈ ℂ)
30 climaddf.4 . . . . . 6 𝑘𝐻
3130, 10nffv 6840 . . . . 5 𝑘(𝐻𝑗)
32 nfcv 2895 . . . . . 6 𝑘 +
3311, 32, 22nfov 7384 . . . . 5 𝑘((𝐹𝑗) + (𝐺𝑗))
3431, 33nfeq 2909 . . . 4 𝑘(𝐻𝑗) = ((𝐹𝑗) + (𝐺𝑗))
358, 34nfim 1897 . . 3 𝑘((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝐹𝑗) + (𝐺𝑗)))
36 fveq2 6830 . . . . 5 (𝑘 = 𝑗 → (𝐻𝑘) = (𝐻𝑗))
3716, 25oveq12d 7372 . . . . 5 (𝑘 = 𝑗 → ((𝐹𝑘) + (𝐺𝑘)) = ((𝐹𝑗) + (𝐺𝑗)))
3836, 37eqeq12d 2749 . . . 4 (𝑘 = 𝑗 → ((𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)) ↔ (𝐻𝑗) = ((𝐹𝑗) + (𝐺𝑗))))
3915, 38imbi12d 344 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘))) ↔ ((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝐹𝑗) + (𝐺𝑗)))))
40 climaddf.12 . . 3 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
4135, 39, 40chvarfv 2245 . 2 ((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝐹𝑗) + (𝐺𝑗)))
421, 2, 3, 4, 5, 20, 29, 41climadd 15543 1 (𝜑𝐻 ⇝ (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2113  wnfc 2880   class class class wbr 5095  cfv 6488  (class class class)co 7354  cc 11013   + caddc 11018  cz 12477  cuz 12740  cli 15395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-sup 9335  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-n0 12391  df-z 12478  df-uz 12741  df-rp 12895  df-seq 13913  df-exp 13973  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-clim 15399
This theorem is referenced by:  fourierdlem112  46343
  Copyright terms: Public domain W3C validator